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Abstract

This-sturdy describes a method of parallelizing a battlefield discrete event simula-

tion. The method combines elements of conservative time synchronization together with

elements of optimistic computation and local rollback on a message passing hardware ar-

chitecture.

(The battle simulation features aircraft moving in a battle area and launching missiles

at enemy aircraft. Aircraft are randomly grouped into logical processes (LPs), and a single

LP is assigned to each pocessor. Aircraft state information is replicated across all LPs.

Only the LP with the minimum next event time can execute safely. While one LP is

executing safely all other LPs are precomputing their next event. When an LP does become

safe to execute it can update its previous precomputation and broadcast the results to all

other Ls.

-The sequential battlefield simulation has no battlefield partitions, and therefore the

pros and cons of partitioning the battlefield in a conservative parallel implementation are

discussed. "\

'Simulation speedup was achieved without battlefield partitioning and various simu-

lation scenarios were run in order to investigate the impact of event interleaving among

logical processes on simulation speedup.

x



A Hybrid Approach

to

Battlefield Parallel Discrete Event Simulation

I. Introduction

August 1990 - The President asks our military leaders to determine how long

it will take to have an effective defensive force in place in Saudi Arabia to deter

Iraqi aggression, and immediately, operational planners set out to determine the

impact of the mission through air mobility simulation. According to the Govern-

ment Accounting Office (10:2,6) (11:2,10) military computer simulations are used

throughout the Department of Defense to help decision makers answer tough ques-

tions like this. Unfortunately, such large and complex military computer simulations

may take hours or days (12) to complete a run on single processor computers. In

addition, typically in a stochastic simulation, multiple runs are required in order to

reach stable parameters and to examine statistical variance on these measures.

In this fast changing unpredictable world, it's not always possible for our plan-

ners to anticipate these tough time-critical situations. To support quick planning

and decision making during the unexpected crisis, we need to develop methods to

speed up military computer simulations.

One approach to the problem of simulation speedup is to take the simulation

that runs on a single processor and move it to a multiprocessor hardware architecture.

This move allows parts of the simulation to run in parallel, and as one hopes, achieves

significant simulation speedup.
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1.1 Background

1.1.1 Computer Simulation. It is often important to test a system to gain

a better understanding of a system's effectiveness under various conditions. Yet it

is often impractical or impossible to conduct the tests under real world conditions.

The cost may be too great, the danger too great, or the system might be a proposed

system and not even exist.

Computer simulation, also called computer modeling, is an attempt to translate

the observable behavior of a real or proposed syste.n into a computer program or

computer model. The goal is to develop a computer model that represents the

essence of the system and its environment accurately enough to provide results that

can reliably predict the performance of the system.

The first step in translating the observable behavior of a system into a computer

model is to identify the essential parameters of a system. In a complex system the

modeler is not normally interested in the entire system, but some subset of the

system. Therefore the essential parameters or the parameters of interest depend

upon the nature of the system itself, and the goals of the modeler, and do not

normally include every observable parameter in the actual system.

For instance, two separate computer programs may model an F-15 aircraft in

flight. However one program is designed to provide insight into the flight dynamics

of the aircraft and the other is designed to provide insight into the F-15's capability

to detect, acquire, and destroy enemy aircraft. There may be some characteristics

of the F-15 that are essential to both computer models such as maximum speed,

but undoubtedly the flight dynamics model will painstakingly attempt to model the

physical shape and aerodynamics of the F-15, while the search and destroy F-15

model is more interested in avionics and weapons systems characteristics, and may

not consider the shape of the F-15 at all.
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After the essential characteristics of the system are captured in the computer

model, the simulation model is started up, and one can observe the behavior of the

model over time. A good model will provide valuable insight into the behavior of

the real or proposed system. However it should be understood that a model only

attempts to predict performance.

For instance, to determine the effectiveness of the Patriot missile versus an

incoming Scud missile, a modeler will first identify the essential observable parame-

ters of the respective missiles, such as maximum speed, radar signature, and sensor

capability. Next the modeler incorporates those features into a computer model.

Finally, the modeler develops an input scenario that describes the initial state of the

model. In this example the input scenario might consist of numbers and locations

of Patriot missile batteries, and numbers, locations, and initial trajectories of Scud

missiles. The output from the subsequent computer simulation runs helps the ana-

lyst determine the effectiveness of the Patriot against the Scud for particular attack

scenarios.

1.1.2 Simulation Resolution. The resolution of a computer model refers

to the level of detail incorporated into the into the model. The smallest entity

modeled in a low resolution simulation might be an aircraft squadron in which case

the observable parameters could consist of squadron morale, overall level of pilot

experience, and numbers of aircraft. The outcome of a battle engagement between

opposing squadrons might be estimated based on these parameters, and the result

would be a decrease in the number of aircraft for one or both squadrons.

A high resolution simulation on the other hand might model a single dogfight

between two opposing aircraft in a great amount of detail, incorporating observable

parameters such as the flight characteristics, flight maneuvers, and missile or gun

shots by each of the aircraft.
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A simulation could contain a mixture of both high and low resolution modeling

levels. As an example, the modeler may not be interested in the details of a training

exercise and simply note that the training occurred by increasing the squadron's pilot

experience level. On the other hand within the same simulation, aircraft attrition

might be modeled through high resolution one-on-one dogfights.

In general the greater the amount of detail in a model the greater the computa-

tional complexity and intensity, and the greater time a simulation takes to complete.

1.1.3 Simulation Types There are two primary types of simulation models:

continuous models and discrete event models.

According to Pritsker (24:58-59):

In a continuous simulation model, the state of the system is represented
by dependent variables which change continuously over time. A contin-
uous simulation model is constructed by defining equations for a set of
state variables whose dynamic behaviour simulates the real system.

Continuous simulations normally make extensive use of differential or difference equa-

tions to determine the value for the state variables at any given instant in time.

In a discrete event simulation the state of the system is updated at discrete

instances in time, normally when some defined significant event occurs. Whereas

with the continuous simulation system state is updated continuously over time. This

research is concerned only with discrete event simulations.

1.1.4 Simulation Time. Simulation time refers to the time in the simula-

tion and does not refer to wall clock time. For instance, a simulation of colliding

atomic particles may be so complex that after running on the computer for several

hours, only two seconds of simulation time have elapsed since the collision.
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There are two primary methods of advancing the simulation time in a discrete

event simulation. The first is called time driven simulation and the second is called

event driven simulation.

1.1.5 Time Driven Simulation. In a time driven simulation the simulation

clock is advanced by some fixed time increment, and the state of all of the objects in

the simulation are updated to correspond to the new time. In the Patriot vs SCUD

example a new trajectory and location will be calculated for each of the incoming

SCUD missiles and for each of the rising Patriot missiles at each tick of the simulation

clock. If the simulation clock increment is too small then many calculations are done

without anything significant happening. Going back to the SCUD example with a

small time increment, on each tick of the clock the SCUD may only move several

meters. If the SCUD is traveling thousands of meters then many location updates

are calculated where the SCUD only moves a short distance on each update. On

the other hand if the clock increment is too large, fewer calculations are needed, but

significant events may get missed. In a large time increment simulation time may

progress more quickly, and the SCUD may travel to its target location without as

many location updates, but if we are also interested in the Patriot's target tracking

and flight control mechanism we may lose track of many significant events since flight

control commands may have been issued every tenth of a second.

1.1.6 Event Driven Simulation. An Event Driven Simulation is usually

referred to as a Discrete Event Simulation. Instead of updating the simulation clock

a fixed time increment as in the the time driven simulation, event driven simulation

updates the clock when significant events occur.

Going back to the Patriot vs SCUD example, significant events include the

SCUD launch, the SCUD entering the Patriot battery's radar range, the SCUD

reaching its target, the Patriot launch, and the Patriot destroying the SCUD. When

the SCUD launch event is executed a future event or events are calculated for the

1-5



SCUD and these future events are inserted into a time ordered list of events called the

Event List or Next Event List. After one event is executed the earliest or next event

is taken off of the Next Event List and is executed. The simulation clock takes on the

value of the time of the event being executed. The simulation clock does not advance

in fixed time increments but jumps from one time to the next as events are taken

off of the Event List and executed. The event execution itself can change the state

of the system and/or schedule more events in the future. The time spent executing

the event doesn't take any simulation time. The simulation essentially skips over the

wasted calculations executed for the hundreds of miles where the SCUD is in flight

where nothing significant happens.

1.2 Parallel Discrete Event Simulation

According to Fujimoto (7:19-20) the greatest opportunity for parallelism lies

in executing events concurrently. The fact that the results of one event execution

can impact other future events causes problems for concurrent execution. If one

event can directly or indirectly impact another event then those two events must be

executed sequentially no matter how many hardware processors are available.

1.3 Problem Statement

The challenge to parallel discrete event simulation is to take advantage of the

parallelism inherent in the real process simulated by using multiple processors to

execute independent events concurrently, and at the same time maintain simulation

integrity by executing interdependent events in sequence. The difficulty lies in the

fact that it is often hard to know apriori which events are independent and which

events are interdependent.
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1.4 Research Objective

My research goal was to take the discrete event battle simulation developed

by Rizza (29) and parallelize it using a hybrid approach consisting of a variation of

Chandy and Sherman's conditional event execution for conservative time synchro-

nization, together with a variation of Reynold's optimistic local rollback.

1.5 Research Questions

1. Can battle simulation speedup be achieved using a parallel protocol hybrid

model consisting of conservative time synchronization and optimistic next event

lookahead on a parallel message passing hardware architecture?

2. Is there an effective method to execute in correct sequence, identical time

events on separate processors?

3. How much does the parallel programmer need to know about specific details

of the simulation application in order to parallelize the simulation?

4. How much does the application programmer need to know about parallel pro-

gramming in order to facilitate parallelization of a sequential simulation?

5. How much of the parallel protocol design and code is reusable between different

simulation applications?

6. Is it possible to develop and use a simulation testbed that features interchange-

able simulation applications and interchangeable parallel time synchronization

protocols? (related to #4 above)

1.6 Assumptions

e Since this battle simulation was developed in a short period of time by a novice

modeller the assumption was that there were some deficie-cie in the prcgram.

Initial testing of the simulation proved this assumption to be true. Several

weeks were spent testing and debugging in order to bring the sequential battle
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simulation to the point where it would run to completion and provide correct

results on a single processor.

e Elements of the SPECTRUM testbed (27:671-679) were used for this research,

and there was expected to be a significant learning period associated with un-

derstanding the workings of the testbed (27:676). These expectations proved

to be true. Additionally, modifications were made to elements of both SPEC-

TRUM and the battle simulation in order to realize some compatibility. It

was difficult to integrate all of the hybrid protocol with SPECTRUM and as a

result only parts of the testbed were used during this research.

1.7 Scope

The primary goal was to parallelize the sequential battle simulation to achieve

speedup while maintaining the integrity of the simulation, and no attempt was made

to improve the battle simulation or make it more realistic.

1.8 Limitations

The characteristics of the battle simulation were not modified to facilitate

parallelization in order to achieve speedup. For example, in the sequential battle

simulation an event execution can result in the scheduling of another event at the

current time or zero time increment. In order to improve the chances for parallel

speedup one might change the original sequential battle simulation so that there is a

minimal time increment greater than zero for event scheduling. The original battle

simulation was not altered to make it more amenable to parallel speedup.
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II. Literature Review

2.1 Introduction

This literature review focuses on parallel discrete event simulation. Most ar-

ticles referred to logical and physical processes and therefore those concepts are

described first. Within the realm of discrete event simulation there seem to be two

major application types. These two types are explained together with some exam-

ples. As mentioned in Chapter 1, one of the primary challenges for parallel discrete

event simulation speedup is how to maintain correct causal relationships between

events executing on separate logical processes. In this regard there have been two

primary areas of research. The conservative class of algorithms prevent causal errors

from occurring, while the optimistic class of algorithms allow causal errors to occur

and then execute some recovery or rollback scheme. The bulk of this review then

looks at the research related to the conservative and optimistic algorithms of time

synchronization for parallel discrete event simulation.

2.2 Parallel Decomposition

Chandy and Misra (4:198-199) describe a scheme where the real or proposed

system being modeled is decomposed into physical processes. Each of these physical

processes communicate with other physical processes in the system via messages.

Logical processes are the abstract or computer representations of the physical pro-

cess. Each physical process has an associated logical process. The logical process

has input and output interfaces and performs some computation. Logical processes

are assigned to multiple processors in a multiprocessor hardware architecture. Lee

(16) mapped logical processes to processors in various configurations and determined

that logical processes that communicate with one another should be mapped to the

same processor in order to minimize inter-processor communications overhead.
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2.3 Simulation Types

In the area of parallel discrete event simulation research the application types

seemed to fall into two main categories. Nicol (22:1-3) describes the two types of

models as message initiating and self initiating.

2.3.1 Message Initiating. In the message initiating model each logical pro-

cess re-evaluates its state (event execution) as a direct result of receiving a message

from another logical process.

A network simulation is an example of a message initiating model. In a network

simulation entities move through a system from one process or service activity to

another (24:96-153). Upon arrival at a process the object may incur some waiting

time and when the object gets serviced by the process, a service time may be incurred.

One example is customers arriving, being serviced by, and departing a bank teller.

Another example is a signal flowing through an electronic circuit. When the signal

arrives at some electronic device it incurs some time delay before it is routed to the

next device. State information associated with the entities such as signal strength

or bank balance is maintained and updated as the simulation progresses.

In the message initiating model logical processes correspo.id to service activities

and the entities traveling between service activities correspond to messages sent

between logical processes. When a logical process receives a message from another

logical process it updates or re-evaluates its state and sends the message on to another

logical process.

2.3.1.1 Message Initiating Inherent Parallelism. The parallelism

inherent in the message initiating model lies in the fact that two logical processes

that are not connected to one another can have no causal impact on each other

and therefore can execute simultaneously. By "not connected" it is meant that the
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output from one logical process does not flow either directly or indirectly to another

logical process.

2.3.2 Self Initiating. The self initiating logical process itself determines

when it will re-evaluate its state. Although a logical process will still receive messages

from other logical processes, these messages serve as update messages containing

information that the receiving logical process will need when it eventually executes

an event. A battlefield simulation is an example of a self initiating model.

In a battle simulation the modeller attempts to model the complexities of the

battlefield environment. The battle simulation generally consists of objects such as

infantrymen, vehicles or aircraft moving about a battlefield and interacting (attack-

ing, evading, or coordinating) with one another. New objects such as missiles may be

dynamically created, and objects such as the missile and its target may be dynam-

ically destroyed. A colliding pool balls simulation and a colliding pucks (13:56-60)

simulation are also self initiating models and pose some of the same problems for

parallelization as those posed by the battlefield simulation.

In the self initiating model logical processes correspond to the tanks, aircraft,

or pool balls. A tank may receive updated location information from another tank,

but that information will not necessarily trigger an immediate event execution for

the receiving tank. However, the receiving tank might make use of that information

when it executes its next scheduled event, or it may use that information to schedule

another event.

2.3.2.1 Self Initiating Inherent Parallelism. The parallelism in-

herent in a self initiating model is more difficult to isolate than in the message initi-

ating model. Although potentially any object can impact any other object, most rely

on the fact that as the distance between objects increases the possibility of causal

dependencies between the objects decreases. Therefore the inherent parallelism is
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based on the distance between objects. As the distance increases the amount of

parallelism possible increases.

2.4 Time Synchronization

Time synchronization research revolves around finding efficient methods of

keeping all of the logical processes in time synchronization to ensure that the correct

sequence of interdependent event executions are maintained throughout the simu-

lation. The methods of doing this fall into two major categories: conservative and

optimistic.

2.4.1 Conservative. The conservative class of algorithms, initially devel-

oped by Chandy and Misra (3:440-452), and Bryant (2), force each of the processors

in a multiprocessor parallel simulation to "play it safe." These algorithms are de-

signed to prevent cause-effect violations. In this scheme each logical process runs its

own part of the simulation and transmits results of its computations in the form of

messages to other logical processes. Message timestamps are always increasing. In

Fig 2.1 logical process (LP) #1 received a message at time five. LP #1 calculated a

service time of five and sent messages to LP #2 and LP #3 with a timestamp of ten.

LPs #2 and #3 realizing that they can receive no message with a timestamp earlier

than ten, can process events concurrently up to a time of ten. LPs #2 and #3 both

have service times of five and six respectively, and they each send a message to LP

#4 with a timestamp of 15 and 16 respectively.

W hen each logical process looks at its set of incoming message timestamps

it identifies the earliest or smallest incoming time. The smallest incoming message

time is its safe time. It then executes events in its next event. list which have a time

less than or equal to the safe time. In this case LP #4 can execute events up to

a time of fifteen. The logical process then blocks until it receives a new minimum

2-4



LP 21

5 5
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safe time. Unfortunately, in this scheme it is possible to enter the deadlocked state

where there is a cycle of logical processes all waiting to receive new safe times.

For example (Fig. 2.2), if LP #1 sends a message timestamped at time ten to

LP #2 but not to LP #3, then LP #3 cannot process any events and neither can

LP #4. If the output of LP #4 somehow feeds back into LP #1 then deadlock exists

and no more events will be processed in this part of the network.

2.4.1.1 Deadlock Prevention. Much of the research to date has re-

volved around avoiding and recovering from deadlock. In order to avoid deadlock

Chandy and Misra (4:210-202) developed a scheme of sending null messages contain-

ing time updates to prevent deadlock. In the example demonstrated with Fig 2.2

when the message with a timestamp of ten is sent to LP #2, a null message with a

timestamp of ten is sent to LP #3. LP #3 then adds its minimum service time of

six to the incoming null message time and sends a null message with a timestamp
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Figure 2.2. Conservative - Deadlock

of 16 to LP #4. Notice that in this case the service times at each LP represent the

minimum service times for any incoming message.

Nicols and Reynolds (23:471-474) propose a variation on the null message pass-

ing scheme called SRADS whereby instead of automatically sending a null message

for each received message, a logical process will send a null message when it receives

a request for one from another logical process. A logical process will send a request

for a null message when it detects that it is about to block waiting for a time update

from another logical process.

2.4.1.2 Deadlock Detection. Another approach allows deadlock to

occur, detects the deadlock, and breaks the deadlock. Several deadlock detection

techniques have been proposed. Misra (19:62-63) proposes one where a "marker"

c "ulates among logical processes marking those that are blocked. If the marker

detects a cycle of blocked logical processes it raises the deadlock flag, and then time

updates, which effectively break the deadlock, are distributed to the logical processes.
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2.4.1.3 Time Windows. Another method of conservative time syn-

chronization called Time Windows by Lubachevsky (17) sets up a time window or

time range for which it is safe to process events. This range is dependent upon prior

knowledge of minimal increments between event times.

2.4.1.4 Pre-Computing. Nicol (21) proposes a scheme of precomput-

ing events in the next event queue to gain better future knowledge of events that are

safe to process.

2.4.1.5 Conditional Events Chandy and Sherman (5:93-99) propose

the conditional event approach to discrete event simulation. In this paradigm events

that are safe to process are called definite events, and events that are not guaranteed

to be safe to process are called conditional events. The algorithm for this method is

as follows:

loop

Each logical process:

1. determines if it has definite events. If a logical process's next event has the

minimum time of all logical process's next events then the logical process has

a definite event.

2. executes or computes as many definite events as possible.

3. sends the time of its pending conditional event after having computed all pos-

sible definite events.

4. waits to receive a message from each logical process. These messages contain

the pending conditional event time. These times are stored and facilitate the

computations in step 1.

end loop.
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2.4.2 Lookahead Lookahead refers to the ability of a logical process to ac-

curately predict when it will send out its next message to another logical process.

Nicol (22:4) classifies two types of lookahead: time-lookahead and full-lookahead. If a

logical process has time-lookahead it can predict the simulation time in its next out-

put message before the next event in the next event list is executed. Full-lookahead

means that not only can the logical process predict what time the message will be

issued but also what the contents of the message will be. Lookahead is based on

some knowledge of the physical process that is being simulated such as the mini-

mum service time at a bank teller window or the time delay of an electronic signal

as it passes through a transistor.

Fujimoto (7:23) states that conservative algorithms must be "adept at pre-

dicting what will not happen". That is to say, in order for two logical processes to

execute simultaneously, with different local simulation time, each must be sure that

it will not receive a message in the past from the other logical process. According

to Fujimoto (7:23) there are three aspects of an event driven simulation that impact

this ability to predict:

1. Lookahead - some predetermined knowledge of the simulation application that

allows a logical process to predict its future message time and pass that infor-

mation on to other logical processes.

2. Event Message - the receipt of a message guarantees the receiving logical pro-

cess that it will receive no earlier messages from the sending logical process.

3. Simulation Structure - two logical processes that are not connected either di-

rectly or indirectly can execute events without regard to each other.

If a simulation has no ability to predict then only the logical process that

contains the event with the smallest timestamp is safe to execute, since that event

could potentially impact any other pending event on any other logical process.
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2.4.3 Conservative Performance. Most of the research to date on the con-

servative time synchronization approach has been with queuing network simulations

(message initiating).

Fujimoto demonstrated (8) that lookahead is indeed critical for achieving speedup

in parallel network queuing simulations.

Su and Seitz (31) achieved some speedup with logic simulations and a deadlock

avoidance algorithm.

Reynolds (27:675) had difficulty when attempting to use the null message pro-

tocol with a battle simulator. The failure was due to zero time increment for time-

lookahead.

Chandy and Sherman (5:97-98) report some speedup with the conditional event

approach and a queuing network simulation. They predict that their algorithm will

work well on simulations such as circuit simulations, but expect poor performance

on simulation problems that have a fully connected structure of logical processes.

Reed and Malony (26:11) conducted research with queuing network simulations

on a shared memory architecture. They used both Chandy and Misra's conserva-

tive deadlock avoidance and deadlock detection techniques and conclude that those

techniques are not well suited for queuing network simulations. They go on to state

that it is unlikely that the Chandy-Misra technique is well suited for any type of

simulation model.

2.4.4 Optimistic Instead of playing it safe, the optimistic class of algo-

rithms make no effort to prevent cause-effect violations.

The most studied optimistic scheme is called Time Warp and is based on

Jefferson's (14) paradigm of virtual time. In Time Warp each logical process executes

freely without regard to what other logical processes are doing. But if a logical

process receives a message "in the past" from another logical process. Then the

receiving logical process must rollback its state to a time less than or equal to the
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time of the received message. This also implies that events will be re-executed and

cancellation messages will be transmitted to negate previously sent messages. The

challenge in this paradigm is to first determine that a message in the past has been

received, and then system-wide, cancel erroneous events, move back to safe states,

and continue the simulation.

To facilitate rollback, each logical process must save previous states. Due to

limited memory, previous states cannot be saved indefinitely. Therefore periodically

the simulation must come to a standstill while global virtual time is calculated.

Global virtual time is the minimum system wide safe time. That is to say, no

logical process will rollback to a time earlier than the global virtual time. After

global virtual time is calculated and distributed to each logical process, each logical

process can free the memory containing state information with times less than global

virtual time.

Variations of the optimistic approach revolve around optimizing the rollback

mechanisms. One such method called lazy cancellation (9) attempts to determine the

extent of the harm done by the message from the past. If the output messages from

the first "erroneous" execution are the same as generated from the "correct" execu-

tion then cancellation messages are not sent and the rollback is complete. Otherwise

a normal rollback complete with cancellation messages is executed.

Other variations such as Moving Time Windows (30:34-42) attempt to put

an upper limit on how far any given logical process can "get ahead" of the other

logical processes. This scheme is based on the premise that the logical process that

is farther ahead in time than the other logical processes is the one most susceptible

to receiving a message in the past from one of the other logical processes.

2.4.5 Optimistic Performance Jefferson (15:741) reported a speedup of

10.5 on the Jet Propulsion Laboratory's 24 node Mark III Hypercube using Time

Warp with a pool balls simulation. Wieland (32:1273-1274) reported a speedup of 4.5
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on a 32 node Mark III Hypercube with a division on division land combat simulation.

Wieland subsequently artificially increased the computation time in relationship to

the message passing time and observed an increase in speedup from 4.5 to 12.

2.4.6 Conservative versus Optimistic. Both paradigms have their pro-

ponents, and both paradigms have their weaknesses. Fujimoto (7:23,26) summarizes

the weaknesses of both schemes:

Conservative Weaknesses:

" Application Parallelism not Fully Exploitable - Even if there is the possibil-

ity (no matter how slight) of one logical process either directly or indirectly

impacting another logical process then those logical processes must execute in

sequential order. Logical processes that could execute concurrently most or all

of the time are forced into sequential execution and therefore opportunity for

parallel speedup is lost.

" Speedup Dependent on Application Detail - To facilitate lookahead application

detail must be known. Attributes such as minimum timestamp increments

or the interconnection between logical processes must be programmed into

the conservative protocol. Also changes in these attributes can significantly

impact performance. According to Fujimoto (7:24) "it has been observed that

seemingly minor changes to the application may have a catastrophic effect on

performance."

" Static Configurations Required - All logical processes and their inter-connections

must be statically defined. Techniques to circumvent this problem lead to ex-

cessive overhead.

Optimistic Weaknesses:

* Thrashing - Critics contend that the optimistic paradigm is susceptible to

thrashing, where logical processes spend most of their time rolling back to
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previous safe states. There is no analytical proof to suggest that the optimistic

paradigm is stable and will not succumb to thrashing. On the other hand

empirical data to date indicates that thrashing is not a problem. Also, Jefferson

(15) states that if there are no zero time cycles progress is guaranteed no matter

how many rollbacks are accomplished.

* Memory Usage - Since the optimistic scheme must save state following each

event execution there is increased memory usage in order to hold all of the safe

state information. If the state saving requirements are large then there is the

possibility of significant overhead associated with managing the state saving

activities.

Fujimoto (7:26-27) concludes by pointing out that both techniques, although

strapped with some weaknesses, have achieved some success. The optimistic paradigm

however has achieved success across a broader range of application types than the

conservative class of algorithms.

2.4.7 Hybrid (Conservative with Optimistic) Dickens and Reynolds

(6:162-164) mention a technique called Local Rollback which combines the conser-

vative with the optimistic method. In the Local Rollback paradigm while a logical

process is waiting to become safe to execute it precomputes future events and saves

the results of those computations but does not send the results to other logical pro-

cesses. Once this logical process does become safe to execute it has a head start

on its computations. If it receives a message in the past then a rollback mechanism

must be invoked but no cancellation messages need be sent.

2.5 Hardware Enhancements

All of the time synchronization methods require some sort of global time syn-

chronization between logical processes. Reynolds (28) presents a framework for

hardware development of auxiliary parallel reduction networks. This hardware can
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rapidly transmit, receive, and process timing information which can be used for

global synchronization calculations in any protocol.

2.6 Time Driven

Nicol believes (20:141) that neither the optimistic nor the conservative ap-

proach will be successful when used to parallelize a complex military simulation.

His premise is that because of the large number of interdependencies in a military

simulation, and the feeble lookahead capability, the conservative approach will get

bogged down in deadlock detection and recovery, and the optimistic approach will

spend all of its time rolling back to previous states. Nicol proposes that the time

driven paradigm will be most effective for military simulations. In this model a

global clock is used. The clock is incremented, then all processors process events up

to the new clock time and wait for the next clock increment.

2.7 Separate and Simultaneous

Fujimoto (7:19) and others point out that there is a class of simulations in-

volving stochastic processes. This includes most battlefield simulations. With this

class, many simulation runs are made in order to minimize statistical variance. In

these cases it is more effective to put a single copy of the simulation program on each

processor in a multiprocessor architecture, and run them all separately and simulta-

neously. For example, using a single processor, a two hour stochastic simulation that

needed 30 runs to minimize variance would take 60 hours to finish. On a 30 node

multiprocessor architecture with a separate copy of the simulation on each node, 30

runs of the simulation would be complete in two hours.

2.8 Simulation Testbed

Reynolds (27) developed the SPECTRUM simulation testbed. The SPEC-

TRUM testbed purportedly supports easy mixing and matching of simulation appli-
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cations and parallel time synchronization protocols. Reynolds indicates that more

was learned about parallel simulations doing the actual protocol and application de-

velopment then by running experiments to determine speedup. Specifically he had

underestimated the amount of application specific knowledge required to implement

an application with a specific protocol. He outlined the need to identify classes of

simulation applications and classes of parallel protocols and then determine which

applications fit best with which protocols.

2.9 AFIT Research

Proicou (25) used the Chandy-Misra algorithm with independent logical pro-

cesses in a network queuing type of simulation and mapped logical processes to

physical nodes in an arbitrary fashion. He achieved no speedup. Mannix (18) em-

bedded an event list in every logical process and claims to have achieved superlinear

speedup when no feedback loops were present. Lee (16) continued on with Man-

nix's research and combined logical processes with the hope of reducing interprocess

and therefore interprocessor communication. Lee could not validate Mannix's su-

perlinear speedup. Proicou and Lee used the SPECTRUM testbed which provides

for a suite of time synchronization protocols which are supposedly transparent to

the application programmer. In each case SPECTRUM was not transparent to the

application, and SPECTRUM and/or the application had to be modified to improve

compatibitily.

2.10 Summary

Conservative and optimistic time synchronization are the two main areas of

parallel discrete event simulation research.

In the conservative approach safe events are executed. Safe events are events

that can be executed with the guarantee that a logical process will not receive a

message with a timestamp earlier than the time in the safe event. Following safe
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event execution, time checking is accomplished between connected logical processes

to determine which events are safe to execute on the next iteration.

In the optimistic approach logical processes execute events freely without re-

gard to which events are safe to process. However if a logical process receives a

message in the past then it must rollback by returning to a safe state. This implies

state saving and recovery, and cancellation message transmission.

A hybrid approach which combines conservative time synchronization with

local rollback has been attempted, but to date no results have been published.

Hardware support for rapidly disseminating and processing synchronization

information holds promise for parallel discrete event simulation speedup.

A parallel simulation testbed (SPECTRUM) which supplies a generic set of

parallel synchronization protocols that can be used with various applications has

run into problems caused by application specific requirements which impact the

ability of the testbed to be generic.

2.11 Conclusions

With the conservative approach to time synchronization there doesn't appear

to be much research in the area of parallelizing battle simulations. Most of the

research to date involves looking for parallel speedup of network queuing models.

Battle simulations typically have poor lookahead capability and that makes them

poor candidates for the conservative approach to time synchronization. Some em-

pirical data has been collected using the optimistic approach with a battle simulation.

The results of those tests indicate that it is difficult to achieve significant speedup

with a battle simulation. The Spectrum generic testbed was developed with the

hopes of facilitating protocol comparisons. AFIT researchers have had to customize

the testbed to support particular applications thereby defeating the purpose of the

testbed.
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III. The Model and the Hardware

3.1 Overview

The AFIT Battle Simulation (RIZSIM) is a high resolution battle simulation

model developed by Capt. Robert Rizza as part of his Master's Degree thesis efforts

(29) at the Air Force Institute of Technology School of Engineering. This model is

one of scripted movement of objects (aircraft, land vehicles, or missiles) in empty

space. Each object continues on its scripted path unless it senses another object, in

which case it either evades the other object, attacks it, or does nothing and continues

on its path. Aircraft and land vehicles can be dynamically destroyed and removed

from the simulation and missile objects are dynamically created. No aspect of the

battle field environment such as terrain or weather was modeled.

3.2 Classifying the Model

The method of classifying this model was based on a Military Operations Re-

search Society workshop report called SIMTAX - A Taxonomy for Warfare Simula-

tion (1).

3.2.1 Classification by Purpose. The purpose of creating this model was

to provide a "representative" military high resolution model that can be ported to

the Air Force Institute of Technology's parallel computers for follow on studies and

research into parallel event simulation. On the parallel architecture this model will

be used as an analytical model in the area of developing and analyzing methods of

parallel event driven simulations. In a sense, the reason for developing this model

was to provide a model of a high resolution model. Some of the stated objectives

and requirements of the model are as follows:

e should be a "representative" event driven military model.
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" should be written in the 'C' programming language.

* the software should be easily maintained.

* should use object oriented design.

" computationally intensive.

" should provide output to a display driver.

" parallel processing issues should be considered during all phases of design and

implementation.

3.2.2 Classification by Qualities.

" Domain - In this model the objects operate in three-dimensional space using

X, Y, and Z coordinates. Although in the model itself the objects move about

in empty space, the display driver shows aircraft and vehicles on land.

" Span - The span is virtually unlimited. The movement range of the individual

objects is limited only by the maximum size of the coordinates (double floating

point numbers).

* Environment - There is no terrain, weather, day/night, or cultural features. In

short, the environment is not modeled.

" Force Composition - This model provides five different object or entity types:

Mig and F-16 aircraft, tank and truck vehicles, and a missile. The missile is

the only weapon type that this model currently supports. Other objects (but

not weapon types) could be scripted but these are the object types that the

graphical interface understands. Each entity has a loyalty to a given side, but

organizational structures, C3, intelligence, and logistics are not modeled.

" Scope of Conflict - Conventional.

" Mission Area - The mission areas that it most closely matches from an Air

Force point of view are either Armed Reconnaissance or an aircraft raid on a
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target. Various other missions can be scripted, but due to lack of C3, and lack

of flexibility in movement it is tough to model a mission more complex than

that of a lone gun moving on or above the battle area looking for a target of

opportunity or a pre-specified target. By lack of flexibility of movement I mean

that, for example, an aircraft will stay on its prescript flight path and launch

missiles towards any targets that it senses but it will not alter its flight path

to 'go after' targets.

" Level of Detail - The detail is at the individual entity level. All entities operate

(movement, searching, engaging) as individuals. Attrition processing ;s on a

missile shot by missile shot basis.

3.2.3 Classification by Construction.

* Human Participation - Not Rcqiired/Not Permitted.

" Time Processing - Dynamic/Event Step.

" Treatment of Randomness - Random/Pseudo Random numbers not used. Each

run of a given scripted scenario will produce identical results. This is a deter-

ministic model of a stochastic process.

" Sidedness - One to many sided. All sides behave the same but in the scenario

one side can be given greater capabilities than the other side. Objects of

different loyalties are enemies. Since Ordnance Reached Target is a scheduled

event in time, it is possible for a target to launch a missile after being fired

upon but before being hit. Therefore this model could be considered to be a

many-sided symmetric model.

3.2.4 Hardware Requirements. The software was written in standard

ANSI 'C' and consists of approximately 1300 lines of code. The model was developed

on a personal computer and then with some difficulty ported to a SUN workstation.

Apparently the PC 'C' runtime environment handles pointers a little differently than

3-3



UNIX on the SUN. Some pointer errors not caught by the PC resulted in runtime

errors on the SUN. The problems were fixed and at this time the source code can be

compiled and run on virtually any type of computer

3.2.5 Input.

" Scenario - There are no scenario generation tools or preprocesses associated

with this model. All of the attributes for each object (except missiles), and the

route point data which controls the movement of the objects must be manually

input. An input file is built by the scenario scriptor person and this file is read

into the model at the beginning of the simulation run.

" Data - There is no terrain data. There is no lethality or attrition modeling and

therefore no data associated with those areas. There are object attribute types

available in the model such as aircraft performance and sensor and defensive

system capability. These attribute types are not used. Which is to say that

a scriptor could provide input aircraft performance information to the model.

but the model would not make use of or process that information. There is

no attempt to model a particular type of weapon system or avionics capability

and hence no data requirements for those attributes.

" Instructions - There are no instructions associated with this model.

3.2.6 Firing. Each object has an unlimited number of missiles, so every

target that is acquired will be fired upon. Objects in this model can fire missiles

only. The missiles have no sensor capability. Each object has an unlimited number

of missiles.

3.2.7 Engagement Assessment.
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" Engagement Geometry - Engagement Geometry is not modeled. A missile can

be launched in any direction. The location of the target in relationship to the

attacking object has no impact on the probability of kill.

" Damage Assessment - Single round accuracy, single round lethality, and mul-

tiple round assessment models are not used. When a missile is launched at a

target, the missile schedules a route point for the target's current location fol-

lowed by the target's next routepoint. If the target reaches its next route point

and heads off toward another routepoint before the missile reaches the target

then the target escapes. Otherwise, the target is killed. Partially damaged

objects are not modeled.

3.2.8 Output. Since there is no randomness in this model each given sce-

nario will run exactly the same each time. Consequently there is no post processing

done to accumulate and compare results of various runs. While the scenario is run-

ning significant event information is sent to a graphical output file. This file is used

to generate a graphical animation of the scenario. The graphics software allows the

user to view the battle from any perspective while the battle is being played back.

3.2.9 Measures of Effectiveness. This model does not compute or keep

track of any measures of effectiveness. There are no killer-victim scoreboards or any

other measure of success for a given scenario or mission.

3.3 The Model in Detail

3.3.1 The Players. There is a generic object type, from which scenario

scriptors can build various types of objects such as aircraft, tank, truck, etc. Each

object has the following attributes:

" Object Type - Icon identifier for interface to the graphics driver.

" Object Identifier - Unique number assigned to each object in the scenario.
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" Object Loyalty - A number. Objects with the same number are loyal to each

other.

* Current Time.

" Fuel Status.

" Condition - Value Range - 0 - 100. 0 - Destroyed. 100 - Fully operational.

* Vulnerability - Number indicating the destructive force needed to destroy the

object.

" Location - In X,Y,Z coordinates.

" Velocity - X,Y,Z velocity vectors.

" Orientation - Yaw, Pitch, Roll of the object.

" Rotation Rates - of the object about X,Y,Z axis.

" Operator - Experience and Threat Knowledge.

" Performance Characteristics - Max Speed, Minimum Turn Radius, Average

Fuel Consumption Rate, Max Climb Rate.

" Route Data - Linked list of scripted route points.

" Sensors - Linked list of sensors containing sensor type, range, and resolution

for each sensor.

" Armaments - Linked list of armaments containing armament type, range,

lethality, accuracy, speed, and count for each armament.

" Defensive Systems - Linked list of defensive systems containing defensive sys-

tem type, range, and effectiveness for each defensive system.

" Targets - Linked list of scripted target types and locations.

Scenario scriptors can build various types of objects by varying the values for

the different attributes listed above. The model itself, only makes use of or currently

supports the following attributes:
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" Object Type.

" Object Identifier.

" Object Loyalty.

" Current Time.

" Location.

" Velocity.

" Orientation (excluding roll).

* Route Data.

" Sensors (range only)

" Armaments (Missiles only)

" Targets (type only).

3.3.2 Movement (update-position). Movement for each object is con-

trolled through the use of scripted route points. Each object has its own time ordered

queue of routepoints. This queue of routepoints in essence defines each objects plan

of movement or battle plan for the entire simulation. It is not possible for an object

to increase or decrease its speed during the simulation run at the current time.

The first thing that happens with any event is an update position. The update

position takes the next route point off of the route point queue and moves the object

to that point. It then examines the next route point on the queue and adjusts

the current velocity vectors for the object to point the object in the right direction

toward the next route point. Naturally, prescript route points will be deleted if an

object is destroyed during the run, but normally the prescript route points will not

be removed or adjusted. However, route points can be added as the result of an

object attempting to evade another object, or when an object moves into the sensor

zone of another object (Entered Sensor Range) or when an object senses another
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object (Made Sensor Contact). There is a case where a routepoint will be skipped,

and that is if the object is trying to evade another object that is 'camped out' close

to its next route point.

3.3.3 Searching/Sensing (sensor-check). After an object's position is

updated, a sensor check is accomplished. The Sensor Check function is the behind

the scenes master controller of this model. After the initial Reached Turnpoint events

are scheduled for each object, the Sensor Check function takes over and schedules

all subsequent events except for Ordnance Released.

The sensor check for each object can be thought of in the following way. Each

object has a cylindrical sensor zone with the object in the center. Whenever Sensor

Check is executed for a particular object as the result of an event execution, this

sensor zone is swept from this primary sensing object's (PSO) current location to its

next route point. One by one the path of movement for every other object is then

projected to see if it will intersect the sensor zone of the PSO. The earliest time of

intersection between the PSO and all of the other objects is kept as the projected

event time for a future event. If an object has more than one sensor then the sensor

with the maximum range is always used. Also, a check is made to see if the PSO

will enter the sensor zones of any of the other objects in the scenario. So the Sensor

Check is like a projection in time for an obj( t out to its next route point. It will

either sense some other object, be sensed by some other object or there will be no

contact. The sensor algorithm is based on an object's movement between its current

location and its next route point.

If an object penetrates the outer boundary of a sensor zone of another object

there is a 100% chance that object will be detected. In this model there is no way

for an object to suddenly appear inside of another object's sensor zone. That is to

say, sensor contact is made only when an object intersects with the outer boundary

of someone else's sensor zone. The scenario script can initially put one object inside
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Do Nothing

Will Detect / Evaluatioin Attack -Another Object

Move - SenseEvade

No Detection

Figure 3.1. "Flow" of the Model

Of another object's sensor range in which case there is no Made Sensor Contact.

Unrealistically, an object that is inside of another object's sensor zone is ignored.

There is no randomness involved in this search model. There is a call to a line

of sight check but that function always returns TRUE.

This algorithm only works for objects that are moving between route points.

If an object is not moving it has no sensing capabilities.

After an object reaches its last scripted route point it no longer moves and

therefore loses its capability to sense. For this reason, this model does not support

stationary objects.

3.3.4 Decision Making (sensor-check). The decision process for schedul-

ing future events based on sensor contacts for the primary sensing object is as follows:
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1. If the PSO does not sense any other object and no other object will sense the

PSO then schedule a Reached Turnpoint (advance to next route point) for the

PSO.

2. If the PSO senses another object then schedule a Made Sensor Contact with

the PSO and that object. If more than one contact will be made then schedule

the earliest contact as the next event for the PSO.

3. If another object senses the PSO then schedule an Entered Sensor Range for

the PSO. Earliest contact time applies here also.

4. If the PSO is a missile and senses a target then schedule an Ordnance Reached

Target event for the PSO and the target. If a missile senses another object

then it has collided with the object since the missile's sensor range is zero.

3.3.5 Decision Making (operator-evaluation). This evaluation comes

about as a result of the Sensor Check function scheduling a Made Sensor Contact

event. When Made Sensor Contact is executed it calls Operator Evaluation to de-

termine what to do with this contact. Based on object loyalties, types on the target

list, and sensor ranges, the object will either attack, evade, or do nothing. The target

list is not dynamic it is prescript for each object and contains a list of object types

that an object wants to attack.

3.3.6 Target Acquisition (attack). Objects that intersect other object's

sensor boundaries will be detected with 100% probability. If the detected object is

not the same loyalty as the PSO and it is one of the object types on the prescript

target list then it will be selected as a target with 100% probability.

3.3.7 Evasive Measures (evade). If a PSO senses another object, of dif-

ferent loyalty, not on the target list, and with a smaller sensor range then the PSO

evades the detected object. The evasion takes place by moving (setting up a route

point) that is at 90 degrees away from the direction of movement of the detected ob-
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ject. This is an evasive maneuver to avoid detection. There are no evasive maneuvers

to avoid enemy weapon's systems.

3.3.8 Termination. The scenario terminates when there are no more events

on the event list. That is to say all of the objects have reached their final route point.

The simulation driver provides a function that can be used to end the scenario before

the event list is empty. That function is not used in this model.

3.3.9 The Events.

* Reached Turnpoint - This event is the initial event scheduled for all objects

at the beginning of the simulation. This event is also scheduled by the Sensor

Check function once the scenario is running. When the scenario is running

this is the default event that gets scheduled if no other event applies. When

Reached Turnpoint executes it calls two functions: update position and sensor

check.

* Entered Sensor Range - When an object performs a Sensor Check the white

player or master controller takes over in the form of the Sensor Check function.

This function not only determines if this object will be able to sense anything

between its current location and the next route point, it also determines if any

other object will be able to sense this object. If some other object will be able

to sense this object then an Entered Sensor Range event is scheduled and an

intermediate route point is added at the point where the object will enter the

other's sensor range. When the Entered Sensor Range event executes it calls

two functions: update-position and sensor-check.

* Made Sensor Contact - When Sensor Check determines that this object will

make sensor contact with another object between its current location and the

next route point it adds an intermediate route point where sensor contact

will occur and schedules Made Sensor Contact. When Made Sensor Contact
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executes it calls three functions: update-position, operator-evaluation, and

s:nsor-check.

" Ordnance Released - If the decision within Made Sensor Contact's opera-

torevaluation is to attack, a missile object is created and an Ordnance Released

event is scheduled for the missile. When this missile is created its initial route

point is the location of the object that released the missile, the next route point

is the target's current location. The missile's final routepoint is the target's

next routepoint. When the Ordnance Released event is executed it calls two

functions: update-position and sensor-check.

* Ordnance Reached Target - If a missile object is executing a sensor check and

the sensor check reveals a contact for the missile then the contact means that

the missile has collided with the object (the sensor range for a missile is preset

to zero) and an Ordnance Reached Target event is scheduled for the missile.

When an Ordnance Reached Target event executes it calls the appropriate

functions to delete the missile object and its target from the scenario if a hit

is verified, otherwise, in the case of a miss, only the missile is deleted from

the scenario. After viewing numerous simulation runs it is apparent that the

hit-miss processing within Ordnance Reached Target always results in a hit.

The real hit-miss determination is made by sensor-check. If the missile comes

close enough to the target for sensor-check to schedule an Ordnance Reached

Target then a missile hit will ensue.

* Collision Distance Reached - An analysis of the source code indicates that it

is not possible to schedule this event.

3.4 RIZSIM Example Event Execution

Sequence of operations:

" Pop the next event off of the next event list.
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" It is a Reached Turnpoint event for object #1.

* Update Position performs the following functions:

1. Set the simulation time equal to the time of this event.

2. Pop the next routepoint off of object #1's routepoint list.

3. Update object #1's state information to reflect location at the routepoint.

4. Look at the next routepoint on the routepoint list to determine heading

toward the next routepoint from this location.

" Sensor Check performs the following functions:

1. Sensor check determines that object #1 will make sensor contact with

object #2 at some point between its current location and the next route-

point.

2. Sensor check pushes a new routepoint onto object #I's routepoint list.

This routepoint is at the point where object #1 will sense object #2.

3. Sensor check schedules a Made Sensor Contact event and inserts it into

the next event list. The time on the Made Sensor Contact event is the

time at which object #1 will sense object #2.

4. At this point the processing for the Reached Turnpoint event is complete

and the simulation driver gets the next event from the next event list.

3.5 RIZSIM Bugs

Testing RIZSIM with random scenarios revealed problems in the software that

resulted in software failure. Appendix A details the failures and the fixes or patches

implemented to resolve the problems.

With the fixes in place the simulation works correctly with most random sce-

narios.
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Figure 3.2. Hypercube Message Passing Time (millisecs)

Of note, the RIZSIM evade algorithm was not tested nor is it exercised by any

of the scenarios.

3.6 The Hardware

The target machine for parallelization of this model is an Intel iPSC/2 eight

node Hypercube. EacI. node consists of an 80386 microprocessor with an 80387

math coprocessor. This machine features Direct Connect Modules at each processing

node. These modules basically support message passing that does not interrupt node

processing.

The message passing time is based on the availability of a path between the

sender and receiver and the size of the message. The chart in Figure 3.2 shows the

message passing time between nodes. This chart was derived from message passing

experiments with an eight node Hypercube configured as a ring.
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IV. Parallel Considerations

4.1 Introduction

Most of the research with distributed discrete event simulation and the conser-

vative time synchronization algorithms has revolved around network queuing models.

In terms of a network model RIZSIM can be thought of as a fully connected network

where any object can impact or communicate with any other object. Also, objects

can be dynamically created and destroyed. The service time or delay time at each

node is zero. Given the constraints of this worst case situation, parallel speedup, if

achieved, will provide valuable insight into parallelization of discrete event simula-

tions in general.

4.2 Computational Complexity

The bulk of the floating point calculations in this simulation ,.e in the sen-

sor.check function. A sensor check calculation between two objects consists of ap-

proximately 40 floating point calculations. Remember that a single call to the sen-

sorcheck function results in sensor check calculations between the primary sensing

object and every other object in the simulation. Therefore the order of complexity

for a single event execution is order 'N' where 'N' is the number of players in the

scenario. Although the number of floating point calculations between two objects

in the sensor check is relatively insignificant, the total number of floating point cal-

culations is directly proportional to the total number of players in the scenario. In

a single processor execution of this simulation as the number of players increases

the floating point computational complexity increases in terms of number of floating

point calculations executed.

The fact that the inherent computational complexity is small and increases as

the number of players increases indicates that, for an attempt to achieve paralleliza-

tion speedup, some sort of data or player partitioning would be appropriate.
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4.3 Data Partitioning

The traditional approach to data partitioning in a battle simulation has been

to partition the battlefield. In fact many battle simulations or war games start out

with a partitioned battlefield. With a partitioned sequential simulation the first

logical step in parallelization is to put each sector or group of sectors on separate

processors. In that case, each processor would be responsible for keeping track of

the battle objects that are present in its sector or sectors. Normally in this type

of simulation there are rules for movement between sectors and rules for sensing or

seeing across sector boundaries.

The premise for speedup of the partitioned simulation on a parallel system

is that battle objects physically separated by such a distance that they 'reside' on

separate processors would normally not perform any function or operation that could

impact one another. Therefore, two objects on separate processors could execute

events simultaneously and thus achieve simulation speedup.

Also, each processor is only looking at a subset of the total number of objects

in the simulation, and therefore each event execution on a single processor should

take less time to complete. Another way to look at this is that when an object

executes an event on a logical process it is searching for the next object with which

it will interact. When that object is found, an event is scheduled reflecting that

future interaction. With objects distributed among logical processes in a partitioned

simulation the search space for any given event execution becomes smaller. And

thus the search time will decrease. This is the same as sorting data in order to

facilitate searching through that data. In fact it is entirely possible for a partitioned

battlefield simulation to run faster on a single processor than a non-partitioned

battlefield simulation.

At first glance, it seems that battlefield partitioning is the natural approach

to take, but this method becomes somewhat more complex when cross partition

movement and sensing is taken into consideration.
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Cross partition movement presents the possibility of rollback in the optimistic

synchronization paradigm, and it could prevent two events on separate processors

from executing simultaneously in the conservative paradigm.

As an example demonstrating this problem lets look at a colliding pucks simu-

lation on a partitioned table. Although colliding pucks is less complex than a battle

simulation, it presents many of the same problems for parallelization that a battle

simulation presents (13:56). For this example a conservative time synchronization

protocol is in use. The conservative method demands that only safe events be exe-

cuted. That is to say, when an event is executed there is no possibility of an earlier

event occurring.

In this example there are three* rocessors: 'A', 'B', and 'C' see Figure 4.1 Each

processor is responsible for event execution for the pucks on its sector of the table.

Puck #1 will impact the lower bumper at time 10, so the time of the next event

for puck #1 on processor 'A' is 10. Pucks #2, #3, and #4 are on processor 'B',

are all traveling in the same direction and will impact the lower bumper at time 15.

Puck #5 is resident on processor 'C' and is traveling from right to left and will cross

the boundary at time 5. Puck #5 will subsequently strike puck #4 at time 6. This

causes a chain reaction resulting in puck #2 crossing the boundary between 'A' and

'B' at time 8 and striking puck #1 at time 9.

Even though pucks #1 and #5 are at opposite ends of the table, puck #5 has

indirectly impacted puck #1 resulting in a new next event time of 9 instead of 10. It

appears that the only event that is safe to execute is the event at time 5 on processor

C'.

For processor 'A' to be certain that it is safe to execute the event at time 10,

processor 'A' must be able to lookahead from the current time to time 10 and be

able to tell that no intermediate event will occur. One thought is to use application

specific knowledge to help determine when events are safe to execute. For example,

processor 'B' must be able to tell processor 'A' the earliest possible time that a
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Figure 4.1. Conservative Colliding Pucks

puck might cross from 'B' to 'A'. Knowing the velocity of puck #2 and its location

in relationship to the boundary with 'A', processor 'B' could provide the potenital

crossover time to processor 'A'. That would provide an earliest safe time for processor

'A' and processor 'A' could process events up to that time. This is analogous to

Fujimoto's Lookahead discussed in Chapter 2.

The problem of predicting the earliest boundary crossing time for processor 'B'

becomes much more difficult if one allows for the fact that puck #2 might increase

its velocity based on a collision with a faster puck. Then not only does the time until

crossover become shorter and the safe time for processor 'A' become smaller, but

the overall prediction complexity increase3. Processor 'B' must now determine which

collision between pucks in its partition might result in an earliest boundary crossing.

To make this determination processor 'B' must also take into account the fact that

a puck or pucks from other processors may imminently move into its partition and

thus impact its collision calculations. In this case it becomes difficult to determine
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the earliest crossover time. This is an example of a simulation application with poor

lookahead capability.

A battlefield simulation is similar to the colliding pucks simulation in that

both contain object movement and interaction. Also, it is not unrealistic to expect

that. a battlefield simulation might contain objects such as aircraft that can increase

velocity. Thus the difficulty of predicting the earliest boundary crossing time also

applies to the battlefield simulation.

The problem becomes even more complex when an object in one sector has

a sensor range that extends into one or more other sectors and those other sectors

are the responsibilities of other processors. An example would be an attempt to

model the sensing capability of the Airborne Warning and Control System (AWACS)

aircraft. It is entirely possible that the AWACS would have the capability to see

into every sector of the battlefield. The processor on which the AWACS is resident

potentially must have access to the location information for every aircraft in the

simulation. If that information is divided among the processors, some method of

providing that information to the AWACS must be devised.

Using a strictly conservative protocol with a feeble lookahead capability such

as the example described above, even though the table is partitioned across three

processors, at any given instant only one event can be processed safely. The processor

with the smallest next event time is the only processor that is safe to execute and

proceed with the simulation. This implies that each processor must have knowledge

of the pending event times on all of the other processors in order to determine which

next event is safe to execute.

The heart of the problem both in the colliding pucks simulation and in a bat-

tle simulation is that both have very little or no lookahead capability. As Fujimoto

states (7:22-23), and as the colliding pucks example demonstrates, a simulation dis-

tributed among processors that uses a conservative time synchronization protocol

must have good lookahead in order to achieve good performance. A conservative
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distributed simulation with no lookahead essentially results in a sequential execution

among processors.

4.4 Identical Time Events

It is possible to have identical time events execute safely and concurrently on

two separate logical processes and thus achieve some speedup. The problem here

is that some simulation applications, RIZSIM in particular, demand a sequential

execution of identical time events. The outcome of the simulation varies depending

on the execution ordering of identical time events. Also, in RIZSIM, simulation

time is kept using double floating point numbers and identical time events are rare.

So even if identical time events were able to execute concurrently, that type of

concurrency would be rarely exercised.

4.5 Partitioned Search Space

A battle simulation has feeble lookahead capability and the opportunity for

concurrent processing among processors is virtually lost. The hope for speedup

in a battle simulation, with a partitioned battlefield and a conservative time syn-

chronization protocol, lies in the fact that each processor, executing sequentially,

is executing an event against a subset of the the total number of battle objects.

The battle objects are partitioned among processors based on each one's location on

the battlefield. This effectively partitions the search space among processors, and

therefore each processor has a smaller search space. If one considers the fact that

the search space can also be partitioned or sorted on a single processor execution of

the simulation, the question remaining is whether or not this 'smaller search space'

opportunity for speedup on multiple processors is enough to offset the overhead of

iookahead calculations, boundary area collision and sensing, and object migration

between processors.
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4.6 RIZSIM, and Lookahead

There are several factors which contribute to the poor lookahead capability of

the AFIT Battle Simulation (RIZSIM):

" Movement - The movement of objects in space is similar to that of the colliding

pucks simulation. Battle objects may cross from one sector or processor to

another at crossover times that are difficult to predict without first executing

many calculations.

" Object Interaction - Just as pucks collide resulting in changed velocity vectors

for each ball, battle objects may sense each other, evade one another, or create

and launch missiles.

* Dynamic Object Creation and Destruction - Battle objects can be dynamically

created and destroyed as the simulation progresses.

* Velocity Increase - Although in this simulation individual objects do not in-

crease or decrease their velocities, an object can create and launch a missile

towards another object and the missile normally has a velocity greater than

the object that launched it.

" Identical Time Events - Testing indicates that, for this simulation, identical

time events must be executed in the order in which they are inserted into the

next event list. They must be executed in first-in first-out order. A different

scheme such as last-in first-out for identical time events will result in different

results for the simulation.

" Zero Time Increment Event Scheduling - A current event execution can result

in another event creation and scheduling with a timestamp that is the same

as the current event. This new, zero time increment event, is produced as a

result of the sensor-check function and cannot be predicted prior to execution

of sensor-check. The zero time increment attribute eliminates the traditional
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Chandy-Misra conservative null message passing protocol as a potential pro-

tocol for parallelizing this simulation since their paradigm depends on the use

of non-zero time increments in order to prevent deadlock.

4.7 RIZSIM and the Case Against Battlefield Partitioning

In RIZSIM there are no sectors or battlefield partitions. After analyzing some

examples such as the colliding pucks simulation, and looking at the characteristics

listed above, it is clear that a battlefield partitioning of RIZSIM would add little

if anything to its lookahead capability. Also, battlefield partitioning does add sig-

nificant complexity to the simulation in the form of cross boundary sensing and

moven..-nt, and coordination among processors. This added complexity results in

additional computation and message passing both of which cut into the potential

speedup expected by partitioning the data.

4.8 RIZSIM and a Hybrid Approach

4.8.1 Logical Process Definition. In parallelizing RIZSIM with the hybrid

approach each physical processor plays host to a single logical process. Each logical

process contains an event list and a data structure that holds the current state

of the entire simulation. That is to say the data structure holds every object's

state information. This state information is the same as the observable parameters

discussed in Chapter 1, and consists of variables reflecting information such as speed

and current location. Although in each logical process only a subset of the total

number of objects in the simulation are eligible to be in the event list, the logical

process has access to every object's state information. The single logical process per

physical processor scheme simplifies implementation, and eliminates the overhead

associated with multiple communicating logical processes on a single processor.

4.8.2 Time Synchronization, State Change Updates and Local Looka-

head. Conditional Event Execution - It has already been pointed out that without
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lookahead the conservative time synchronization paradigm is reduced to sequential

execution among logical processes. Assuming that is the case, following every event

execution, logical processes must transmit globally time of next event information.

In this way every logical process in the simulation can determine which logical pro-

cess has the minimum pending or next event time. Only the logical process with

the smallest next event time is safe to execute. This paradigm fits in with Chandy

and Sherman's (5:94-96) thoughts on conditional and definite events, and global

determination of time of next event.

Event List Partitioning and Data Replication - In this paradigm instead of

battlefield partitioning, each battle object in the simulation can be assigned to any

logical process without regard to geographic location. e_;ach logical process has a

single next event list which contains future events for the battle objects that have

been assigned to it. Also, each logical process maintains current up-to-date state

information on every battle object in the simulation. During an event execution the

state of the object associated with the event is updated locally, and at the conclusion

of the event execution, state changes for that object are sent via a message : ) all other

logical processes. Now instead of just global sending of next event time information,

state change information is also transmitted.

The types of state changes that can occur as a result of an event execution

must be determined prior to parallel implementation based on knowledge of the

simulation application. An alternative is to send the entire state of the object whose

state changed. This does not require application knowledge but results in larger

message sizes.

Local Lookahead and Parallel Speedup - Up to this point data replication, event

list partitioning, and conditional event execution will not only result in a sequential

event execution across logical processes, but due to the message passing overhead will

also result in simulation slow down. Speedup requires the application of optimistic

methods. Dickens and Reynolds (6:161-163) propose a method of local rollback,
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whereby pending conditional events are optimistically executed but the results of

that execution are not transmitted to other logical processes. Although Reynolds

applied this concept to a message initiating model (queuing network), the same

concepts can be applied to a self-initiating model (battle simulation).

In the battle simulation, when one logical process is executing safely the others

can be precomputing their next event. The results are maintained locally, and once

the pending conditional event becomes safe to execute, the results can be made offi-

cial and transmitted globally in the update message. In this scheme each processor

that is not safe to execute looks ahead one event into the future and essentially has

a "leg up" on event processing when it does become safe to execute. Each processor

takes advantage of its idle time by predetermining as much as possible the results of

the next event execution.

This then is a hybrid approach that combines the idea of conservative con-

ditional event execution with optimistic local lookahead to achieve speedup. The

following example (fig 4.2) with two logical processes illustrates this scheme. Each

logical process has access to global state information, and each logical process has

knowledge of the other logical process's next event time. Logical process #1 has the

minimum next event time so it can execute its next event safely. Logical process #2

realizes that it must wait, but instead of waiting idle, logical process #2 precomputes

its next event and stores that information. Upon completion of its event execution

logical process #1 sends updated state information together with a new next event

time.

Upon receipt of the update information from logical process #1, logical process

#2 determines that it is now safe to execute. The updated state information can

impact the local lookahead of logical process #2 in three ways: Logical process #2

may have to do a complete recomputation, a partial recomputation, or no recompu-

tation. With no recomputation or a partial recomputation, the previously computed

results can be quickly updated and made permanent, and state update information
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Figure 4.2. Hybrid Approach - Example
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is sent back to logical process #1. In a best case scenario, assuming a favorable

ratio of communications time to computation time and good interleaving of events

between logical process #1 and logical process #2, linear speedup is approachable.

If a logical process has completed a local lookahead and is not safe to execute, then

it waits idle and processes received update messages until it does become safe.

4.9 Differences Between the Hybrid Approach and Battlefield Partition-

ing

In the hybrid approach data is replicated across all logical processes. That

is to say every logical process has access to data reflecting the state of the entire

simulation. In battlefield partitioning each logical process is only interested in, and

only has access to information on objects in its sector and perhaps in its boundary

areas. So for an event execution only a subset of the entire simulation state data is

needed for computation. This is where battlefield partitioning achieves its speedup.

The hybrid approach uses optimistic event execution to achieve speedup.

4.10 The Hybrid Approach and Speedup

The overall reduction in processing time in this approach is determined by

what percentage of each event was precomputed using a lookahead while some other

event was executing safely. The following three statements assume negligible com-

munications and update processing overhead.

9 If a logical process completes an event lookahead computation while some other

logical process or combination of logical processes were executing safely then

the effective execution time for that event is zero.

e If a logical process becomes safe to execute while in the midst of a lookahead

computation of an event, then only the part of the computation that was

completed prior to the logical process becoming safe represents processing time

reduction.
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* If an event is rolled back or if consecutive events are executed on one processor

then there is no time reduction associated with those events.

Communications Overhead - Following each event, the logical process that just

completed safe execution sends a broadcast update message to all other logical pro-

cesses. This message is fixed size. Therefore for a simulation with a given number of

events, as the single event computation time increases the communications overhead

remains the same. Computation time can be increased by increasing the number

of players or objects in the simulation. After a certain point the computation time

becomes much greater than the communication time for each event, and therefore

communication time will represent a negligible part of the simulation.

Update Processing Overhead - After a logical process becomes safe to execute

and before it can make its lookahead results permanent it must execute a lookahead

update. This update is needed because the previous event execution by some other

logical process has changed the state (In the case of RIZSIM) of at least one and

possibly two objects in the simulation. Using RIZSIM as an example, a complete

event execution (either normal or lookahead) consists of a sensor check between

the object associated with the event and every other object in the simulation. An

update on the other hand will only consist of a sensor check between the object

associated with the pending event and one or two other objects associated with the

just completed event. As with communications overhead, the update processing time

remains constant even if the number of objects in the simulation increases. Therefore

a point can be reached where there are enough objects in the simulation so that the

update processing time becomes negligible.

Assuming negligible communications and update time, total execution time for

a simulation using the hybrid paradigm is defined by the following formula:

n m

HybridExecutionTime = (y PiEi) + (E PdEd)
d=1
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where:

n = # of events in the simulation

i= event #

P = percentage of event execution during safe time

E = execution time for this event

m = # of events where there was a lookahead computation and the event was sub-

sequently deleted

d = event # of an event on which a lookahead was accomplished and the event was

subsequently deleted

This formula also assumes that the lookahead execution runs to completion

prior to the logical process checking incoming update messages. Given that the

execution time is constant for any given event the variables of interest are P and m.

Examining m first, an example from RIZSIM is in order. If one logical process

conducts a lookahead execution and the object associated with that event is sub-

sequently destroyed as the result of processing the update message then that event

is deleted. The portion of the lookahead execution that was conducted while the

logical process was safe to execute is wasted time and adds to the overall execution

time. If the simulation is executing on a single processor there are no events of this

type. With RIZSIM this occurs relatively infrequently, but for completeness this

phenomenon must be taken into consideration.

The variable of most interest is the P on the left side of the plus sign. The

following observations can be made about this variable:

* If the simulation is executed on a single processor then P = 100 for every

event.

" If a logical process becomes safe to execute and must rollback and re-execute

the next event then the value of P can range from 100 to 200. The value will be
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closer to 100 if the logical process becomes safe to execute toward the end of its

lookahead computation. The value will be closer to 200 if the logical process

becomes safe to execute just after it has started its lookahead computations.

* If there is no rollback and the logical process becomes saffe to execute after the

lookahead computations are completely finished then the value of P is zero for

this event.

* If there is no rollback and the lookahead computations are in progress when

the logical process becomes safe to execute then the value of P will range

somewhere between zero and 100.

Figure 4.3 shows two examples that illustrate this formula. The logical pro-

cesses are on separate processors and are executing concurrently. The events are

overlaid on a single time line in order to show what would be the single processor

total execution time versus the multiple processor reduced execution time. The dou-

ble lines between events serve to separate the events and indicate some overhead for

communications and update message processing.

In example 1, for events #1 and #2 the values for P are between zero and 100.

Each of those events became safe to execute while in the midst of the lookahead

calculation. Therefore the lookahead execution time prior to the event becoming

safe to execute represents 'saved time'. The portion of the event lookahead that was

executed while the event is safe to execute is added into the overall execution time.

The total execution time can be determined by summing the portion of each event

that is executed in the safe area. The event execution time outside of the safe area

represents time saved.

Consider the following values for Ei and Pi:

E, = 100

E2 = 100

E3 = 100
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Example 1

LP 1 LP 2 LP 3
Lookahead Lookahead Lookahead

Safe I Safe
Event 1 Event 2 Event 3

P = 33.3 P = 66.6 P =0.0

Example 2

LP 1 LP 2

Lookahead Lookahead

Safe Safe Safe

Event 1 Event 1 Event 2 Event 2

Rollback P = 100 Rollback 100 < P < 200

Figure 4.3. Hybrid Execution Time

Pi = 33.3

P2 = 66.6

P3 = 0.0

HybridExecutionTime = 33.3%(100) + 66.6%(100) + 0.0(100) = 100

Speedup = M = 3

This portion of the simulation achieved linear speedup.

Example 2 shows the impact of rollback. Logical process #1 has completed a

lookahead but must subsequently rollback and re-execute the event during its safe

time. Since the lookahead was conducted during what normally would have been

idle time there is no slowdown, but neither is there speedup. Logical process #2

became safe to execute immediately after beginning its lookahead. Following the

lookahead, logical process #2 processed its update message and determined that it

was now safe to execute and that a rollback was needed. Therefore event #2 was
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re-executed. In this case there is simulation slowdown since one event is essentially

executed twice.

The underlying premise here is that rollbacks such as the one in example #2,

event #2 will occur relatively infrequently. Intuitively one would think that this

would be the case. As the number of processors and the number of objects in the

simulation increase the chances that an event execution on one processor impacts the

immediately succeeding event on another processor decreases. Test results (Chapter

6) bear out this premise.

The formula for simulation speedup is as follows:

Sedup = SingleProcessorExecutzionTime

HybridExecutionTime

The lower the value of P for each event in the simulation, the lower the Hy-

brid Execution Time and the better the parallel speedup. An interesting aspect of

the Hybrid formula lies in the fact that for a given set of P as the computational

intensity increases the the amount of speedup remains the same since the Hybrid

Execution Time will increase proportionately with the Single Processor Execution

Time. This observation of course assumes negligible communications and update

processing overhead. The challenge of lowering P in a parallel hybrid simulation is

discussed in the next section.

Measuring 'P'- Without interrupt servicing of incoming messages it is difficult

to measure the exact value of P for each event execution. The logical process cainot

measure the exact instant in its lookahead calculations that it received an update

message with contents indicating that this logical process is now safe to execute.

However it is possible to measure the number of events where the value of P will lie

somewhere between zero and 100. These are the events where a lookahead has been

completed and the results are made permanent, perhaps after a quick update. In

other words the results of the lookahead are actually used and no rollback of any type
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was executed. As the value of P '-proaches zero for each event the multiple processor

execution comes closer to linear speedup. The following Use Lookahead Ratio reflects

the percentage of the time that a beneficial lookahead was accomplished:

U~khd~t~ -Used_.Looka heads
U seLookaheadRatio = sdLoaes

TotalNumber-of _Events-in-theSimulation

4.11 The Hybrid Approach and Factors Impacting Speedup

There are two factors impacting speedup in this approach: event interleaving

and the ratio of computation time to message passing time. Computation to com-

munications ratio plays a role in every parallel application, but the factor unique to

this paradigm is event interleaving.

4.11.1 Event Interleaving. Event interleaving refers to the degree to which

event executions are interleaved among logical processes. Since each logical process

only looks ahead one event, consecutive event executions within a single logical

process result in loss of speedup. The following trivial example demonstrates this.

Logical process #1 in Figure 4.4 is executing safely, and at the same time logical

process #2 is doing a lookahead computation. When #1 finishes, it sends an update

to #2. Logical process #2 has precomputed results so it merely updates the results

based on the information received from #1 and sends out its update message. If

we assume negligible message passing time then two events have been executed in

essentiaily the time it takes to execute one event.

In Figure 4.5 logical process #1 has two consecutive safe events to execute

before process #2 is safe to execute. In Figure 4.4 the first two events are executed

concurrently in almost the same time as one event, and the the second figure the

first two events are executed sequentially on processor #1 and therefore speedup is

lost.
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Send Receive
Update Update

LP1I Safe Execution I I Lookahead Execution

Lookahead

Receive Send Update
Update Update

LP 2 Lookahead Execution ILookahead Execution

Lookahead
Update

Figure 4.4. Event Interleaving

Send
Update
Message

LP Safe Execution Safe Execution

Update
Message
Receive

LP 2 [ Lookahead Execution IDLE

Lookahead
Update

Figure 4.5. Consecutive Events Hurt Speedup
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4.12 Hybrid and Load Balancing

Although this initial research does not delve into load balancing, intuitively it

seems that load balancing with the hybrid approach is fairly simple. The goal of

load balancing in the hybrid approach is to ensure good event interleaving. Since

every logical process has access to the next event time of every other logical process,

the logical process that is currently safe to execute can lookahead into its event list

and determine with a good degree of certainty whether or not it will be executing

consecutive events based on the timestamps of those events and its knowledge of

other logical process's next event times. If it will be executing consecutive events

then load balancing can be enacted by sending one or more events to other logical

processes for insertion into their event lists. Further research would be needed to

determine if this approach would be fruitful.

4.13 Hybrid and Linear Speedup

Let's consider a perfectly interleaved simulation with eight logical processes

and therefore eight processors. There is one aircraft on each logical process and each

aircraft executes five events. There are forty events in the complete simulation. A

single event execution takes 7 time units. In this example initially update process-

ing time is taken into consideration. An update execution based on the incoming

update message from one logical process takes 1 time unit. This model ignores

communication overhead.

Figure 4.6 shows the execution timeline for this simulation. While logical

process #1 is executing its first event the other logical processes are doing their

lookahead calculations. While logical process #1 is doing its lookahead calculation

the other logical processes are updating their lookahead calculations and broadcast-

ing the results. An update execution takes one time unit therefore updates from

seven other logical processes takes seven time units. Note that logical process #1

executed the first safe event in the simulation and therefore it has no update time
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immediately following its initial event execution. Logical process #2 executed the

second safe event in the simulation and needed one time unit to process the update

from logical process #1 following its lookahead computation. Logical process #3

will need two update time units and so on. Logical process #8 needs seven time

units to process the seven updates from the seven other logical processes. Following

the second and subsequent lookahead executions each logical process will need to

process seven updates, one from each of the seven other logical processes. Logical

process #8 turns out to be the "long pole in the tent" and sr 'ming the time val-

ues along logical process #8's timeline results in a total execution time of 70 time

units. This is the total execution time for the perfectly interleaved simulation on

eight processors.

A single processor execution of this simulation results in a execution time of

280 time units (40 * 7). Speedup for the eight processor perfectly interleaved model

is 4.0 '80 / 70). By reducing the update time speedup increases and as the update

time goes to zero speedup approaches eight (linear speedup).

It not unrealistic to expect update times to be much smaller than normal

execution and lookahead times. A normal execution and a lookahead involves sensor

checking all of the aircraft in the simulation, whereas an update only sensor checks

the aircraft whose state data has changed based on the incoming update message. So

in this case if there were 512 aircraft in the simulation then a normal or a lookahead

execution would take 512 time units and a complete update would take 7 time units.

Although it is easy to realize small update times in a realistic simulation, the

real challenge is to realize perfect interleaving in a realistic simulation.

1.14 RIZSIM and Hybrid - A High Level Example

Consider a RIZSIM scenario with 50 Red Aircraft against 50 Blue Aircraft

running on two processors.
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LP 1 EX I LOON UPDI LOON UPD I LO UPD I LON UPD I DONfl
E63

DONE
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Negligble Communications Overhead

Figure 4.6. Logical Process Timeline

4-22



" Scenario - The scenario file consists of 100 lines of data. Each line describes

the initial characteristics or state of each aircraft. Each line also contains the

battle plan for each aircraft, in the form of a list of routepoints and a list of

target types. The two logical processes, logical process #1 and logical process

#2, both read in the entire scenario. Therefore each logical process has access

to the complete set of global state information for this simulation run. After

each logical process has read in the scenario, initial events are scheduled.

" Initial Event Scheduling - This is the point where the event list gets partitioned.

In this example, a round robin type of initial event scheduling is used. As it

turns out logical process #1 gets all of the even number aircraft and logical

process #2 gets all of the odd number aircraft. There is an even mix of red

and blue aircraft on each logical process. Even though each logical process has

access to global state information on every aircraft, each logical process will

only execute events for the aircraft that it has initially scheduled. Aircraft do

not migrate from one logical process to another as in the battlefield partitioning

paradigm.

" Initial Event Execution - Tiebreaking - In this case there are 100 initial events,

50 on each processor, all of them with an event time of 0.0. With this conser-

vative approach only the event with the minimum safe time is safe to execute.

In RIZSIM, the order in which identical time events are executed matters.

That is to say that different execution ordering of identical time events leads

to different results. Therefore a tiebreaker is needed for identical time events.

The details of the tiebreaker algorithm are described in Chapter 5. Basically

it consists of associating a global event number with the event at the time

it is inserted into the next event list. If there are two logical processes with

two pending events with identical timestamps then the pending event with the

lowest event number executes first.
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" Lookahead - While logical process #1 was executing the event for Aircraft #1,

processor #2 was doing a lookahead event execution for the next pending event

in its list. The pending event on processor #2 is in this case associated with

Aircraft #2. After receiving the updated information from processor #1, pro-

cessor #2 updates its lookahead calculations, makes its lookahead calculations

permanent, and sends an update message to processor #1.

* Missile Creation - When an Aircraft launches a missile, a missile object is cre-

ated on that Aircraft's processor. An Ordnance Released event is scheduled on

the processor, and the outgoing update message contains information relevant

to the new missile so that all other processors can update their global state

information by adding the new missile to the simulation.

" Ordnance Reached Target - An ordnance reached target event results in the

destruction of the missile and its target. This event may result in the deletion

and rescheduling of future events. For example if some other aircraft has

scheduled a made sensor contact event with an aircraft that gets destroyed

then that made sensor contact event must be rescheduled since the aircraft has

been destroyed and no longer exists. The update message contains the object

identification numbers of the missile and the aircraft that were destroyed. This

type of update message can result in local rollback or recomputation of the

lookahead ii the pending event or the projected event are related to either of

the two objects that were destroyed.

The simulation proceeds by continually executing safe events and precomputing

conditional events until the event list on every processor is empty. At that point the

simulation terminates.

4.14.1 Update Message Contents. Following each safe event execution

the logical process s nds out an update message to all other logical processes. The

contents of this message are as follows:
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" Time of Next Event - The sending logical process inserts the time of its pend-

ing event into the message. This gives all logical processes the capability to

determine which logical process will safely execute next.

" Update Information - This information is application specific. In RIZSIM this

information consists of location, velocity, and routepoint changes. Since all

logical processes start out with the same data on all aircraft in the simulation,

only change information need be sent in this message. If a missile is created as

a result of the event execution then information relating to the missile's initial

state is included in the message.

* Tiebreaker Information - This information is application specific. As men-

tioned previously, in order to achieve consistent results RIZSIM demands that

identical time events be executed in a certain sequence. A globally unique

tiebreaker number is associated with each event and must be included in the

update message. Two event numbers are sent in the simulation. One is the

event number associated with the pending event. The other is the next avail-

able event number for use in scheduling future events.

4.15 Summary

Each physical processor contains a single logical process. Each logical process

contains a subset of battle objects. A logical process's subset of battle objects are

'native' to that logical process and can have events in that process's event list. A

logical process has global knowledge of state information of every battle object in the

simulation. Only the pending event with the global minimum next event time is safe

to execute. Following execution of a safe event an update message is sent to other

processors. This message contains the changes to the state information impacted by

execution of the safe event. The message also contains the new time of next event.

In this way global state information remains consistent and minimum next event

time can be determined.
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In order to realize speedup, while the safe event is being calculated, the other

non-safe logical processes are precomputing their next events. Once a previously

non-safe processor becomes safe to execute, the precomputed event information can

quickly be made permanent.

Speedup is dependent on the amount of event execution interleaving among

logical processes. The greater the amount of interleaving the better the chances for

speedup. Speedup is also dependent on the computation to communication time

ratio. The lower the communication time and the greater the computation time the

greater the opportunity for speedup.
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V. The Hybrid and PZSIM - Top Level Design

5.1 Design Considerations

5.1.1 Software Integration. The original plan was to integrate three soft-

ware packages: RIZSIM (the battle simulation), a locally developed simulation

driver, and SPECTRUM (protocol design and testbed). The three packages are

not completely compatible with one another. For instance, each package contains a

simulation driver, only one of which can be used. Also, all three have defined data

structures with the same name and different fields. For these reasons it was not

possible to completely integrate all aspects of each package.

5.1.2 Simulation Integrity. The mcdsure of success for simulation integrity

is that the simulation must produce the same output from two, four, or eight pro-

cessors, as it does on one processor. The graphical output file provides a detailed

trace of what occurred during the simulation run. The integrity of a multiprocessor

simulation run can be determined by comparing the graphical output file with that

of a single processor run. A given input scenario always produces the same output,

therefore for a given input scenario the results must always be the same whether the

simulation is executing on one processor or eight processors.

5.1.3 Multi-Processor Scaling The design should support easy running on

various numbers of processors in order to facilitate testing. SPECTRUM provides

facilities for easily executing a simulation on various size 'cubes'.

5.2 Parallel Design

The design consists of four parts. The first part relates to the initialization,

the second to the conservative distributed synchronization protocol, the third to the

optimistic lookahead and rollback, and the last to simulation termination. Before
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describing each of those parts it is worthwhile to describe the major data structures

associated with this system.

Data Structures

# Event List - Each logical process has a time ordered list of events to be executed.

Each logical process has its own unique event list. By unique I mean that a

given aircraft will have events in only one event list associated with one logical

process. The initialization design (below) describes how aircraft are partitioned

among logical process's event lists.

* Object Data Structure - This structure consists of the information relating to

the state of the simulation. It contains all of the aircraft, each one uniquely

identified by a number, and location, velocity, sensor range, plan of movement,

and list of targets for each aircraft. In this implementation this structure

consists of an array of pointers to the aircraft attributes. For instance array

element number five is a pointer to the record that contains all of the state

information associated with aircraft number five. This data structure is repli-

cated across all logical processes and must remain consistent across all logical

processes. During initialization each logical process starts with an identical

copy of this data and as a logical process changes the data values within the

structure it sends a message to all other logical processes detailing the change.

This data structure is part of the original sequential simulation. Assuming

that all of the processors in the parallel configuration are identical, if a single

processor can run the simulation then a multiple processor configuration will

work.

e Next Event Time Array - This array contains the time of the pending or next

event on each processor or logical process. For example array element number

two contains the time of next event for the pending event in the event list in

logical process number two. This array is replicated across all logical processes
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and must be consistent across all logical processes. Each logical process has

access to the pending event time of every other logical process. Therefore all

logical processes can easily determine which logical process's pending event

time is the minimum pending event time. With this knowledge the logical

process with the minimum pending event time can safely execute.

The data structures described above provide the basis for design of this sim-

ulation with this conservative protocol. Characteristics of RIZSIM demand the use

of two other data structures that must be globally replicated and consistent across

all logical processes.

e Tiebreaker Array - As mentioned previously RIZSIM demands that identical

time events be executed in a certain sequence in order to preserve simulation

integrity. The tiebreaker array is an array of event identifiers associated with

the pending event on each logical process. If two or more pending events have

identical event times then the pending event with the smallest event identifier

is the one that can ) safely executed.

e Highest Object I Lr - Since objects can be created dynamically in the

form of launched iles and these objects need unique number identifiers a

global variable is maintained which contains the value of the next available

identifier number.

5.2.1 Initialization Design. During initialization the Spectrum software

loads an identical copy of the application software on each processor and sets up

a logical process to physical processor mapping. This is the only use made of the

Spectrum testbed in this parallel simulation. After each logical process is loaded onto

its respective processor (one logical process per processor), the application software

RIZSIM begins executing on each processor. The first step RIZSIM takes is to read in

the input scenario. Each logical process reads in t scenario from the scenario data
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file via the RIZSIM function "read-datafile". Remember that each line of the scenario

data file contains complete information about one aircraft in the scenario including

its initial location and velocity vectors together with its plan of movement, and list

of target types. In this way every logical process in the simulation has a complete

copy of the input scenario. During this part of initialization RIZSIM also initializes

the graphical output data file. In order to ensure that duplicate information is not

written to the output data file some changes were made to "read_datafile" which

only allow one logical process to initialize the output file.

At this point in the simulation each logical process has a complete copy of

the scenario and the graphical output data file has been initialized. Also, since new

objects can be created in the form of missiles, a global number representing the next

available aircraft identifier is maintained by each logical process. For example if

initially there are 100 aircraft in the scenario then each logical process realizes that

the next object identifier number will be 101 and the number 101 will be assigned

to the first missile that is created.

5.2.2 Initial Event Scheduling. The next step is to schedule initial events

for each logical process. This is accomplished in the RIZSIM function "sched-

uleinit-events". In this step the aircraft get divided among the logical processes.

Once an initial event is scheduled for an aircraft on a particular logical process then

that aircraft becomes "native" to that logical process and all subsequent events for

that aircraft will be with the same logical process. Since all logical processes have

access to the data for every aircraft the initial events are scheduled based on unique

aircraft identifier, physical processor node identifier associated with the logical pro-

cess, and the number of logical processes in the simulation. The algorithm is as

follows:

IF (aircraft identifier MODULUS number of nodes EQUALS node identifier)

THEN schedule an initial event for this aircraft.

5-4



Processor # Aircraft ID
0 4,8, 12, 16
1 1,5,9, 13
2 2,6, 10, 14
3 3, 7, 11, 15

Table 5.1. Aircraft to Processor Assignment

For example, in a 16 aircraft scenario with four processors or logical processes

the aircraft will be divided among processors as in Table 5.1.

Because of characteristics of the input scenarios and the manner in which

RIZSIM executes initial events, this method of initial event scheduling results in

a simulation that is initially perfectly interleaved. If there are 256 aircraft in the

simulation then the first 256 events in the simulation are perfectly interleaved.

One nice feature of this paradigm is that after initialization no more checks or

efforts are needed to determine which aircraft are native to which logical processes. If

an event is executing for aircraft number four the state data for aircraft number four

is updated locally during the event execution. Following event execution the changes

for the state data for aircraft number four are sent to all other logical processes. The

other logical processes don't care where aircraft number four exists, all they need to

know is that they must update their state information for aircraft number four.

5.2.3 Tiebreaking. Another aspect of initialization that also applies through-

out the simulation run relates to tiebreaking when two events have identical time-

stamps. In RIZSIM the order of execution of two identical time events makes a

difference in the outcome of the simulation. In order to preserve the correct se-

quence of execution of two identical time events in this parallel system, as in a

sequential system, a tiebreaking mechanism is required.

In RIZSIM the tiebreaking rule is based on time of insertion into the event list.

Between two events with identical times the event that was inserted into the event
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list first will be executed first. In order to ensure that tiebreaking works correctly

a globally unique event identification number is assigned to each event when it is

inserted into the event list. If there are two pending events with identical times then

the event with the smaller event number is safe to execute. The initial event number

assigned to each event corresponds to each object's identification number. Object or

aircraft number one has an event number of one, two of two, and so on.

Taking an example where there are 16 aircraft in the simulation, aircraft #1

on processor #1 executes the first event in the simulation. If this event results in

another event scheduled, then that event will have an event number of 17. Upon

completion of ;ts event execution, the updated state information on Aircraft #1, the

next available event number (18), and the next event time on processor #1 (0.0),

are sent to the other logical processes.

5.2.4 Conservative Distributed Synchronization Design . The con-

servative protocol ensures that only the logical process with the smallest pending

event time executes. The control structure for this paradigm follows:

WHILE NOT DONE

processincoming-messages

IF safe-to-execute THEN

do-event

IF send.messageiflag THEN

send -outgoing-messages

END WHILE

5.2-.4.1 Function Descriptions

process-incoming- messages - the function process-incomingmessages performs sev-

eral functions:
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" Updates next event time for the sending logical process in the Next Event Time

Array.

" Updates next event identifier number for the sending logical process in the

Tiebreaker Array.

" If the sending logical process created a new missile object as a result of its last

event execution then the receiving logical process uses data from the message

to create the same missile. This ensures that the object state data structure

remains consistent across logical processes. Also, if a missile was created then

the highest object identifier variable must be incremented.

" State changes, such as location and velocity, are updated in the object state

data structure based on information provided in the update message.

safe-to.ezecute - This function determines which logical process Las the min-

imum next event time by looking through the Time Array. If two logical processes

have the same minimum time then next event identifiers are checked and the logical

process with the smaller identifier number is the logical process that is safe to exe-

cute. Since event identifiers are globally unique there is no chance of a tie between

event identifiers.

do-event - Event execution remains essentially unchanged from the sequen-

tial version with two exceptions. Whenever RIZSIM s-' -ules an event then the

build-message function is called, and the set-event-id function is called. The build

message function provides the content for the outgoing update message, and the

set-event-id function adds the event identifier number to the event to facilitate

tiebreaking. The build-message function also sets the send messageflag to true.

The build-message function writes its data to an output message buffer and must

first check and perhaps wait for the previous message to be completely sent.

send-outgoing messages - The function send outgoing-messages simply sends

the update message to all other logical processes. It uses a non-blocking send with a
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one-deep output message buffer. Since there is a danger of the message buffer being

overwritten by the build-message function, the build-message function first checks to

ensure that all messages have been sent before writing to the output message buffer.

5.2.4.2 Update Messages. The message sent from one logical pro-

cessor to all others following in event execution is called an update message and

contains the following information:

" Time of next event in the sending logical process's Event List.

" Event identifier number of the next event in the sending logical process's Event

List.

" If a missile was created then initial state data related to the new missile is

included in the message. A missile creation also indicates to all logical processes

that the globally unique object identifier number has been incremented.

* Normally an event execution results in a change of state for one of the objects in

the simulation, therefore an object identifier together with change information

is included in the message.

5.2.4.3 Conservative Time Sytichronization Design Decisions.

The most difficult design decision was whether or not to send multiple functionally

cohesive messages after each event execution or to send one message that contains

various types of data. The application RIZSIM presents the possibility of a sin-

gle event execution creating a missile and changing the state of the aircraft that

launched the missile. It was decided to send a single message following each event

execution. Although this scheme forces logical processes to process a multifaceted

message, I estimated that processing a single multifaceted message would be easier

to implement than processing several distinct but related messages following each

event. Composing and decomposing the incoming and outgoing messages is some-

what more complex, but the number of messages in the system is kept to a minimum,
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and message processing following an event execution is easy to !:cop track of. Follow-

ing an event execution the executing logical process will send exactly one message

to all other logical processes.

5.2.5 Optimistic Lookahead and Local Rollback Design. The design

up to this point allows the simulation to execute on a parallel hardware architecture.

Up to this point, while one logical process is executing safely all others are on hold

until one of them has the minimum next event time. The next step is to design and

implement the software that will allow speedup by making use of that idle wait time.

There are three main areas of the Lookahead and Rollback software design each of

which is described below:

look-ahead - The function look-ahead makes a copy of the next event in the

Event List and executes that event. The results of the event execution are saved in

temporary storage. In the case of the application RIZSIM the lookahead involves

executing the sensor check function and saving the results.

lookahead.update - Following a look-ahead execution a message will arrive

with updated state information for one of the objects in the simulation. looka-

head-update will execute, and based on the information contained in the message,

lookahead-update will either update the results in temporary storage, leave those re-

sults alone, or throw them out completely. In the case of RIZSIM a lookahead-update

normally consists of executing the function single-sensor-check. The function sin-

gle-sensor-check was derived directly from the function sensor-check. The differ-

ence, implied by its name, is that single-sensor-check only runs a sensor comparison

between the primary sensing object and the cbject whose state just changed, as

reflected in the incoming update message.

make-lookahead- real- The function makelookahead-real takes the data located

in temporary storage following a look-ahead execution and makes that data per-
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manent by transferring that data into the global data structures and scheduling

appropriate events in the Event List.

The following is the simulation control structure program design language for

incorporating both conservative time synchronization and optimistic lookahead:

lookahead-complete and uselookahead = FALSE

WHILE NOT DONE

process-incoming-messages calls lookahead-update

IF safe.to-execute THEN

IF lookahead-complete AND use.lookahead THEN

make-lookahead-real

lookahead.complete and use-lookahead = FALSE

ELSE

do-event

lookahead-complete and use-lookahead = FALSE

ELSE

IF NOT lookahead.complete THEN

uselookahead = TRUE

look-ahead

lookahead-complete = TRUE

(F send-messages THEN

send-outgoing-messages

END WHILE

5.2.6 Simulation Termination. Simulation termination is coordinated through

the host processor. For RIZSIM when a logical process's Event List is empty then

that logical process is finished with the simulation. The logical process sends a simu-

lation.complete message to the host. When the host has received a complete message

from all logical processes the simulation is finished. When a logical process has an
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empty Event List the last update message contains a next event time of infinity

and knowing that information all other logical processes refrain from sending further

messages to the completed logical process.

5.3 Required Application Knowledge

One of the research questions deals in the area of application specific knowledge.

Particularly, how much application specific knowledge does the parallel programmer

need in order to parallelize a given application? The following summarizes required

knowledge for parallelizing RIZSIM:

" Tiebreaking: Needed to know how identical time events are handled in sequen-

tial RIZSIM.

" State Updates - In order to "fill in" the contents of the update message, needed

to know what state changes are possible as the result of a given event execu-

tion. Different events will result in different types of state changes. These

relationships had to be identified and then a method of flagging those changes

and providing the correct information to the outgoing update message had to

be developed.

" Lookahead - For lookahead calculations, needed to know where state changes

could be made. RIZSIM functions were copied and modified to make the state

changes temporary for a lookahead execution instead of permanent as in a

normal event execution.

" Lookahead update calculations - For lookahead update calculations needed to

know all of the potential impacts of the state changes contained in an update

message.

" Lookahead and Making the lookahead Permanent - For both Lookahead cal-

culations and for making the lookahead calculations permanent had to know
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the mechanics of a RIZSIM event execution so as not to disrupt the contents

of the next event list or the state data structure.

5.4 Design Summary

As mentioned at the beginning of this chapter, one of the challenges was to try

and integrate three different software packages: Spectrum, RIZSIM, and a Simulation

Driver.

5.4.1 Spectrum. The goal of Spectrum is to provide a testbed that facili-

tates mixing and matching parplel protocols with various applications. The hope is

that with a stable baseline test environment, better timing comparisons can be made.

Spectrum provided a nice facility for defining logical processes and mapping them

to processors. Spectrum also provided some of the basic functions needed to send

messages between logical processes. Spectrum's logical process manager provides

interfaces to the protocol specific functions called "filters". The examples provided

were with queuing network simulations and it was not clear how the hybrid concept

fit into Spectrum's concept of filters. The logical process manager functions pro-

vided with Spectrum were not used, instead the control structure described above

was implemented.

5.4.2 Simulation Driver. The simulation driver built into RIZSIM was

removed and replaced with the locally developed simulation driver. The locally

developed simulation driver provides a suite of singly linked-list manager functions,

which for the purposes of this research were replaced with doubly linked-list manager

functions.

5.4.3 RIZSIM. The functions added as a result of parallelizing RIZSIM

with this hybrid design fall into three areas: conservative time synchronization,
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global state change, and optimistic lookahead with local rollback. These functions

are described above.
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VI. Test Results

6.1 Simulation Integrity Testing

After each step in the software design and implementation process simulation

integrity testing was conducted. This was to ensure that a simulation running on

a single processor produced the same results as a simulation running on multiple

processors.

Since the simulation produces a graphical output file that is a detailed trace of

aircraft and missile movement, creation, and destruction, that file was used to verify

simulation integrity.

First a sinf,)', processor run was conducted with scenarios containing the fol-

lowing aircraft numbers: 2, 4, 8, 16, 32, 64, 128, 256, and 512. Each of these runs

produced a baseline graphical output file against which the multiple processor runs

were compared.

For each of the scenario sizes simulation runs were conducted on two, four, and

eight processors. The graphical output files were compared with the baseline, single

processor, files using the UNIX 'sdiff' utility. This utility (using the '-s' switch)

highlights the differences between two files.

The parallei implementation produced output identical to the single processor

runs for the baseline suite of test scenarios.

6.1.1 Simulation Errors. The baseline tests were conducted with aircraft

speeds of five and missile speeds of 1000. Subsequent timing tests were conducted

with missile speeds lowered to 20 units to make the scenario a little more realistic

in terms of the relationship between missile and aircraft speeds.

At the missile speed of 20 the sequential RIZSIM "crashed" with scenarios of

512 aircraft on a single processor.
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Also, with two of the 256 aircraft timing scenarios the total event counts were

slightly smaller on eight processors vice two or four processors. Scenario 256b pro-

duced eight fewer events on eight processors out of 2674 events than on the single

processor baseline run. Scenario 256e produced one less event on eight processors

out of 2506 events than on the single processor baseline.

The reason for these errors both in the baseline sequential simulation and the

parallel version are unknown. They may be related to the floating point calculation

problem (See Appendix A.). In any case, the errors in scenarios 256b and 256d had

no significant impact on the timing results for either run.

6.2 Timing Tests

In general any type of output during the simulation run can lead to unpre-

dictable timing results since output flows through the 'host' process, and the 'host'

process is subject to use from other users and the operating system. Therefore all

simulation output during the timing runs was turned off.

6.2.1 Timing Run Scenarios. All of the test scenarios have the following

characteristics:

" Aircraft only are used. No ground vehicles are used.

" There are equal numbers of red and blue aircraft.

" The sensor range for all of the blue aircraft is 15.

* The sensor range for all of the red aircraft is 10.

* Aircraft speed is 5 for both red and blue aircraft.

* The initial routepoint and the subsequent flight plan routepoints were ran-

domly generated using the UNIX 'C' library random number generator.

" The number of routepoints initially given to each aircraft is 6.

" The missile speed is 20 for all missiles.
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6.2.2 Initial Event Interleaving The characteristics of RIZSIM tiebreak-

ing and the initial event round robin scheduling result in the initial set of events

being perfectly interleaved for each simulation run. If there are 256 aircraft in the

scenario then the first 256 events are perfectly interleaved. As a comparison several

simulation runs were made with range partitioning of the initial events so that there

was consecutive execution of the initial events on each logical process. Also, this

round robin scheduling with the scenarios used for these tests resulted in an even

mix of red and blue aircraft on each processor.

6.2.3 Scenario Sizes. Timing Runs were made with scenarios of size 64,

128, 256. Five random scenarios for each of these sizes was generated and run. Each

scenario was run on a 'cube' size of one, two, four, and eight nodes.

6.2.4 No-Missile Scenarios. A missile launch results in a zero time in-

crement event scheduling and execution. This causes two consecutive events to be

executed on a single processor, and hence hurts event interleaving and cuts into the

USE.LOOKAHEAD ratio. Therefore simulation runs were made with scenario sizes

of 64, 128, 256, and 512 where no missiles were launched. This helped increase the

amount of interleaving in order to determine the impact of event interleaving on

speedup.

6.3 Timing Measurements

Each logical process is timed from the time it starts until the time it fin-

ishes. The timing mechanism is based on wall clock time using the 'mclock' function

provided with the Hypercube 'C' library. Each logical process calculates its own ex-

ecution time. The overall simulation execution time is based on the logical process

with the longest execution time.

The speedup calculation is the time of execution on a single processor divided

by the time of execution on multiple processors.
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Figure 6.1. Simulation Speedup - with Missiles

Tables in Appendix B show the raw results for timing runs of various size

simulations with and without missile launches.

The charts in figures 6.1 and 6.2 show the average speedup for various scenarios

and various numbers of processors.

6.4 Findings

6.4.1 Speedup/USELOOKAHEAD/Event Interleaving. For every sce-

nario as the number of processors increased, the USELOOKAHEAD ratio increased

(indicating that interleaving increased) and the amount of speedup increased. Fig-

ure 6.3 shows the USELOOKAHEAD/speedup relationship for the 256 no-missile

scenarios.

6.4.2 Processor Assignment by Loyalty. In order to assess the impact

of the initial assignment of aircraft to processors, the initial event scheduling of the

256 aircrft scenarios were changed to get rid of the perfect event interleaving during
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256 Acft with Missiles - 8 Processors
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Figure 6.4. Initial Interleaved vs. Non-Interleaved (solid red-solid blue)

the initial event executions. The initial events still executed in the same order and

the simulation results were identical, but instead of interleaving among processors,

the initial events were executed consecutively on a single processor.

Figure 6.4 compares the 256 no-missile scenario with perfect initial interleaving

(256 events) and an even mix of red and blue aircraft per processor to the 256 no-

missile scenario with solid red on four processors and solid blue on the other four

processors. This initial solid red/solid blue partitioning yielded eight interleaved

events out of the first 256 events. Both initial partitionings produced identical results

in terms of simulation integrity. The perfectly interleaved scenarios had a better

USE-LOOKAHEAD ratio and better speedup. Analysis of the data reveals the

the better USELOOKAHEAD ratio was due to almost entirely to the initial event

interleaving bias.

Thinking that perhaps one of the keys to speedup is an even mixing of red and

blue aircraft on each processor an initial scheduling was implemented that evenly
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Figure 6.5. Initial Interleave vs. Non-Interleaved (even mix)

mixed red and blue aircraft on each processor and yet did not provide good event

initial event interleaving. In this case there were 16 interleaved events out of the first

256 events. Figure 6.5 compares the non-interleaved even mix with the interleaved

even mix. The speedup for the poorly interleaved solid red-blue versus the poorly

interleaved red-blue mix (1.5 vs. 1.54) are virtually the same. This indicates that

aircraft to logical process assignment by loyalty plays an insignificant role in speedup

determination.

The same type of tests were run on the 256 aircraft (with missile) scenarios

and similar results were obtained.

6.4.3 Speedup Limits. Although the 512 player scenario has many more

event executions than any of the 256 player scenarios, the amount of speedup is

the same (See Appendix B). This indicates that for a given number of processors

and a given USELOOKAHEAD ratio the potential speedup has an upper limit no

matter how much the size of the simulation increases in terms of number of players
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Table 6.1. 256c Scenario, Spin 10, NO Missiles
I #Processors[ 1 1 2 J 4 8 I#Events

Scenario 256c 11743.01 499.6 352.7 254.6 5984
Ave. Speedup 0 1.48 2.1 2.91

Ave. UseLookahead 0 .47 .69 .80

Table 6.2. 256c Scenario, Spin 100, NO Missiles
# Processors l1 2 4 [ 8 ]#Events]
Scenario 256c II2025l 1374 965 696 598T4-

Ave. Speedup 0 1.47 2.09 2.90
Ave. Use-lookahead 0 .47 .69 .80

or computational intensity. To confirm this premise spinloops were inserted into the

simulation. A spinloop artificially increases the computation time by executing a

meaningless floating point calculation in a tight loop for a given number of iterations.

Tables 6.1 and 6.2 show the results of these runs.

Note that although execution time increased due to the increased computa-

tion, the amount of speedup remained the same. After a certain point communi-

cation overhead no longer plays a primary role in limiting speedup. These results

match the HybridExecutionTime formula. As computation time increases, the

USE.LOOKAHEAD ratio remains contstant and P for each event remains constant.

The Hybrid Execution Time increases proportionately with the Single Processor

Execution Time and therefore the amount of speedup remains constant.

6.4.4 The Perfectly Interleaved Simulation To get a better handle on

the impact of perfect interleaving on speedup, and to verify the model on perfect

interleaving presented in chapter 4, a scenario was developed that resulted in per-

fectly interleaved events among eight logical processes with no local rollbacks. The

scenario consisted of eight aircraft split among eight logical processes with no mis-

sile launches, sensor contacts, or entered sensor ranges. The only events executed
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were the reached turnpoint events. Each aircraft had six reached turnpoint events.

Spinloops were used to increase the computational intensity and thereby minimize

inter-logical process communication impacts. A spinloop artificially increases the

amount computation time in the scenario by executing meaningless floating point

calculations in a tight loop.

The multiprocessor execution achieved a speedup of 3.98 when running on eight

processors for this perfectly interleaved simulation. The model predicted a speedup

of 4.0.

The perfectly inteileaved simulation without the spinloops in the update mod-

ule was also run and a speedup of 7.89 was realized. The model predicted a result

of 8.0.

6.4.5 Psuedo Realistic Scenario Execution. In order to be sure that the

observed speedup was not due to the initial random mixing of red and blue aircraft

a scenario type was developed that has the following characteristics:

" The battlefield is evenly split into two areas, the red area and the blue area.

" Each Aircraft has six routepoints.

" All of the routepoints for the red aircraft lie within the red area.

" The blue aircraft initially start with two routepoints in the blue area. The

next two routepoints are in the red area, and the final two routepoints for the

blue aircraft are back in the blue area.

" Within each area for each aircraft the routepoints arc randomly assigned.

These scenarios are realistic in the following sense: initially there is no contact

between the red and the blue aircraft, the aircraft subsequently engage in battle as

the blue aircraft penetrate the red area, and then the forces disengage as the blue

aircraft return to the blue area.
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The scenarios were run on eight processors and the results are shown in table

6.3. Note that the number of events increased slightly for the realistic scenario

when compared to the original 256 Aircraft with missile scenarios in table 6.4. Also,

speedup improved a little bit, as did the USELOOKAHEAD ratio.

Table 6.3. 256 Aircraft Scenarios - With Missiles - Psuedo Realistic
! # Processors 11 1 8 # Events

Scenarios r256a 217.6 102.1 3294

r256b 211.1 99.9 3251
r256c 204.9 98.8 3181

Ave. Speedup 0 2.1
LAve. Uselookahead 0 .63

Table 6.4. 256 4ircraft Scenaros - With Missiles
# Processors 111] 2 14 8 # Events

Scenarios 256a 150.2 114.8 92.4 77.2 2538
256b 157.5 120.2 95.7 79.6 2674
256c 148.4 115.8 94.2 70.3 2551
256d 138.7 104.9 83.3 75.8 2318
256e 151.3 114.5 89.9 75.8 2506

Ave. Speedup 0 1.31 1.63 1.97
Ave. UseJookahead 0 .38 .52 .59

Table 6.5. 256 Aircraft Scenarios - No Missiles - Various Routepoints
# of Processors 11 1 8 # Events I Ratio I Speedup

Scenarios 256 RP3 216.1 76.6 2444 .75 2.82
256 RP6 606.3 204.2 5980 .81 2.9
256 RP9 1139.0 371.3 10260 .82 3.0

256 RP12 1602.7 511.7 13740 .82 3.1

6.4.6 Scenarios with Different Number of Routepoints. Four scenar-

ios one each of three, six, nine, and twelve routepoints for each aircraft were run

on eight processors. Table 6.5 shows the results of those scenario runs. It appears
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that the amount of speedup levels off after a certain point as the number of events

increases.

6.5 Summary

These results show that the Hybrid paradigm is effective at achieving simu-

lation speedup. The best speedup ranged from two to three for eight processors

depending on the type of scenario used and the number of events in the scenario.

After a certain point the amount of speedup appeared to level off at approximately

three for eight processors regardless of the increase in the number of events or the

computational intensity.

The amount of event interleaving determines how much speedup will be achieved.

As the number of processors increases the amount of interleaving increases and the

amount of speedup increases.

The results remained consistent throughout all of the tests. No significant

variations were observed by changing aircraft to processor mapping or by using a

realistic type of simulation.

As demonstrated, perfect event interleaving can quite easily lead to significant

speedup. The majority of the tests consisted of scenarios that resulted in random

event interleaving. With the perfectly interleaved scenario speedup rose significantly

and approached 8 for an eight processor simulation.

These tests indicate that the challenge is to develop methods to improve the

amount of event interleaving in the hybrid paradigm.
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VII. Summary, Concjitsjons, and Further Research

7.1 Summary

This paper described a method of parallelizing a battlefield discrete event simula-

tion. This method combines elements of conservative time synchronization together with

elements of optimistic computation and rollback.

Each hardware processor in this message passing architecture hosts one logical pro-

cess. Each logical process maintains the state of the entire system. Although each logical

process maintains complete state information, only a subset of the total number of objects

in the simulation are resident in a given logical process's event list.

Of all the logical processes only the logical process with the minimum next event

time can execute safely. During a safe event execution, the logical process updates its

state information and schedules additional events for itself as appropriate. Following a safe

event execution the executing logical process sends state update information and its new

next event time to all other logical processes. With this globally distributed information

all logical processes can determine which one of them is safe to execute next.

Up to this point the event list is divided among logical processes and at any given

instant only one logical process is executing safely. In this way the events spread across mul-

tiple logical processes are executed in the same order as with a single processor simulation

execution. This ensures simulation integrity. A multiple processor simulation execution

produces the same results in the same order as the sequential version. This conservative

paradigm by itself does not achieve speedup.

In order to achieve speedup an optimistic technique is implemented. While the one

logical process with the minimum event time is executing safely, all other logical processes,

instead of waiting idle, precompute as much as possible their next event. The results

of the precomputation or lookahead, are kept in temporary storage. After receipt of the

update message from the logical process that just finished executing safely, the other logical

processes update their lookahead results. If one of these "lookahead" logirn1 prcres cs :s

now the sate logical process then it simply transfers the precomputed results in temporary

storage into permanent storage, schedules new events, and sends out the update message.
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7.2 Conclusions

This paper concludes by addressing the research questions posed in Chapter 1:

1. Can a battle simulation achieve speedup using a parallel protocol hybrid

consisting of conservative time synchronization and optimistic next event

look-ahead on a parallel message passing hardware architecture?

Yes, this scheme achieved, approximately, a speedup of three for eight processors.

Testing indicates that as the number of processors increases and the better the event

interleaving becomes the greater the speedup.

Advantages of this hybrid approach:

" Incremental development possible - The conservative time synchronization pro-

tocol can be designed, implemented, and tested first. After successful testing

for time synchronization, the optimistic lookahead processing can be developed.

" Simulation integrity easy to determine and maintain - since the parallel imple-

mentation produces identical output to the sequential implementation, simula-

tion integrity can be checked at any point in the execution. The output from the

parallel implementation is ordered the same as the output from the sequential

implementation.

" Identical time events handled - This paradigm handles the case where identical

time events must be executed in a particular sequence.

" As the number of processors increases and the computation time increases the

effectiveness of the scheme increases.

* Load balancing - Since the goal of load balancing for this scheme is to provide

good event interleaving, and event interleaving is based on event timestamps

only, intuitively it seems that load balancing might prove easier in this case

than in the case of battlefield partitioning. Although I haven't seen any stud-

ies oi, load balancing for a partitioned battlefield simulation, it would seem

that dynamic resizing of battlefield partitions would be required together with
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some knowledge of the state of the battlefield situation (i.e. Are many objects

converging in battle, to one logical process?).

" Battlefield Interactions - Although radio communications are not modeled in

RIZSIM, it is clear to see that this hybrid design allows for complex battlefield

interactions such as inter-object communications. Since the location of the ob-

ject on the battlefield plays no role in the parallel protocol, an object on one end

of the battlefield can send a radio communication message to an object at the

other end of the battlefield. For example an AWACS controller can send flight

instructions to an aircraft on the other side of a battlefield. This information

would be included in the global update message transmitted following each safe

event execution.

" A partitioned battlefield simulation that attempts to improve speedup by tak-

ing advantage of the distance between objects on the battlefield would have a

difficult time maintaining that speedup while allowing near instantaneous cross

battlefield radio messages.

* Application Specific Knowledge - Although some application specific know-ledge

is required. The type of knowledge needed for this hybrid design relates more

to knowledge of what types of data structures are used, and how and when they

are updated.

Disadvantages of this hybrid approach:

* Data replicated across all logical processes - Data replication could limit the size

of the simulation that can run on the parallel system. One of the advantages of

partitioning the data is that a simulation too large to run on a single processor

could be executed when spread across many processors.

2. Is there an effective method to execute in correct sequence, identical time

events on separate processors?
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Yes, tiebreaker information on the pending event for each logical process is main-

tained by each logical process. The tiebreaker is used to determine which event

executes first in the case of identical time events.

3. How much does the parallel programmer need to know about specific

details of the simulation application in order to parallelize the simulation?

In this paradigm the programmer needs to know if identical time events must be

executed in a specific order. If so, rule or rules for tiebreaking must be gleaned from

the sequential simulation.

Basically, the parallel programmer must understand which events cause what type of

state changes in order to accurately reflect those changes in the update message. In

RIZSIM an event execution results in state changes for one or two objects. Instead

of sending the complete updated state of each object following each event execution,

The protocol was designed to only send the changes to the states of those objects.

Because of this, one needed to know what type of changes are made by certain events.

For example, with RIZSIM, a ReachedTurnpoint event results in a routepoint being

deleted from the routepoint list, whereas with an EnteredSensorRange event a

routepoint is deleted and another routepoint is added. That added routepoint had

to be included in the update message. This knowledge is essential for generating the

contents of the update message.

The parallel programmer must know where the computational complexity or intensity

exists in the sequential simulation. The section of code that contains the computa-

tional intensity is what gets precomputed. Details of the algorithms are not required

knowledge, but the parallel programmer must know the how the results are stored

and how to update those results. This knowledge is essential for implemepnting the

optimistic lookahead.

4. How much does the application programmer need to know about parallel

programming in order to facilitate parallelization of a sequential simula-

tion?
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The application programmer doesn't need any knowledge of parallel progranming

techniques. However, the software design of the sequential simulation should make

use of basic design principles such as functional cohesion and loose coupling in order

to make the parallel programmer's job easier.

Ironically, in the interest of making the sequential program execute faster, the ap-

plication programmer may "cut corners" in the design. For instance, in order to

cut down on function calls a programmer might combine functionality into one large

function or procedure. Although the sequential program may run faster, program

understanding, software maintainability, and the ability to easily parallelize the sim-

ulation could be adversely impacted.

5. How much of the parallel protocol design and code is reusable between

different simulation applications?

Code Reuse - Some of the event list management functions and low level message

passing functions are reusable. In general, for a battle simulation and the hybrid

protocol some but not all of the code is reusable. The time synchronization and

tiebreaking code could be easily reused. The state change update processing based

on update message contents, and the lookahead and lookahead update processing are

application specific and the code could not be easily reused.

Design Reuse - The top level design concepts could be reused and tailored to fit other

battle simulations. But because of some of the detailed knowledge required of the

specific application it is difficult to judge how "easily" this paradigm and this design

could be molded to fit other battle simulations.

6. Is it possible to develop and use a simulation testbed that features in-

terchangeable simulation applications and interchangeable parallel time

synchronization protocols? (related to #4 above)

Spectrum purports to provide a framework to mix and match various applications

and protocols. Spectrum provides functions that make calls to user supplied protocol

specific functions (called filters) which take care of the parallel protocol processing.
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The fact that these filters are application specific make it difficult to mix and match

protocols. As a result I did not use the Spectrum "filter" mechanism.

It would be difficult to develop a testbed that coula easily accommodate different

battle simulations. Some parts common to all applications like the simulation driver

might work in a testbed, but much of the complexity revolves around integrating

the protocol with the particular application. The implementation of this protocol

required some knowledge of the application, and that may very well be the case for

every protocol and every battle simulation. The requ,;ement for application specific

knowledge and processing could defeat the ability of a testbed to be truly generic.

7.3 Recommendations/Further Research

7.3.1 More Hybrid Research Recommend further research in the area of hybrid

protocols for discrete event battle simulations. Testing should be accomplished with larger

simulation scenarios and larger number of logical processes or processors. Research in the

area of load balancing of this type of protocol can be conducted by designing scenarios

that result in unbalanced loads. Various heuristics and techniques can be tested to try to

improve speedup by balancing the load.

7.3.2 Perfect Event Interleaving Recommend further research in attempting to

acheive perfect event interleaving. One thought is to develop some sort of scheduling and

distribution mechanism for determining when eventf will be executed on which processor.

7.3.3 Combine Hybrid/Partitioned Battlefield Recommend further research

in combining this hybrid protocol with a battlefield partitioned simulation. Combining

these two would hold the potential for realizing the speedup associated with a partitioned

search space together with the speedup associated with the event lookahead.

7.3.4 New AFIT Battle Simulation Recommend developing a new AFIT battle

simulation that makes use of object oriented or object based design techniques. This battle

simulation should be flexible and modular so that modifications can easily made to in order

to mimic the characteristics of different "real world" battle simulations. With this flexible,
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well designed battle simulation at the core, various protocols can be designed around it.

In essence the battle simulation becomes the foundation for a testbed. Instead of mixing

and matching applications and protocols as Spectrum attempts to do, this testbed would

only support mixing protocols on a single application or variation of that application.

Knowledge gained from this first step might lead to a better understanding of how to mix

and match various applications and protocols.

7.3.5 Parallel Object Oriented Databases Recommend investigation into us-

ing parallel object oriented databases for discrete event simulation. Although this simula-

tion used no database at all, many battle simulations use large databases for information

such as terrain data. It is not beyond "eason to believe that future simulations will need

access to massive databases, and it would prove worthwhile to start investigating the

database connection to discrete event simulation.

7.3.6 Typical Battlefield Simulation Recommend a study to determine what

types of battle simulations are currently being used, and what are their major characteris-

tics as they apply to parallel programming. This research should be conducted before the

development of the AFIT battle simulation. Questions such as how objects move across

the battlefield should be addressed. For instance do objects follow a prescripted plan of

movement as in RIZSIM or does each object have some sort of built in decision making

logic that controls movement based on objective and the current environment?

7.3.7 Hypercube Model Recommend investigating feasibility of developing a

model of the Hypercube using a simulation language like SLAM. If the model is well

designed then characteristics of a particular application and a particular protocol can be

overlaid on the model. By characteristics I mean attributes such as message sizes, com-

putational intensity, and message passing behavior. Speedup tests can then be conducted

using the SLAM model without worrying about application specific details.
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Appendix A. RIZSIM Bugs

A. Application Problems

A.1.1 Subtraction Mixup. subtraction calculation where the operands were

on the wrong sides of a minus sign resulted in aircraft travelling in a direction op-

posite of what it should have been. This vas fixed by moving the operands to the

correct sides of the minus sign.

A.1.2 Identical Sensor Range. When two aircraft with identical sensor

ranges encounter each other two identical routepoints are scheduled for each of these

aircraft. An aircraft with consecutive identical routepoint locations will cause compu-

tation errors in the arctangent calculations for aircraft pitch. The scenario generator

generates the same sensor range for all of the aircraft with the same loyalty. When

two aircr-ft of the same loyalty sense each other a computation error will result.

This problem was patched by inserting a conditional check for aircraft of the same

loyalty in the sensor check function. If the aircraft are of the same loyalty then they

ignore each other. This problem was patched and not fixed. If two aircraft have

different loyalties but the same sensor range then the problem will re-occur.

A.1.3 Stationary Object Sensing. When an aircraft reaches its last route-

point it is essentially through with the simulation. It no longer moves and it no longer

has sensing capability. It becomes a stationary object in space that can be sensed

by other moving objects. When a moving object senses a stationary object a soft-

ware failure occurs because an attempt is made to pop the next routepoint from the

stationary object's empty routepoint list. This was fixed by putting in a check to

see if the object being sensed is stationary by first checking to see if its routepoint

list is empty.
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A.1.4 Past Event Scheduling. When an aircraft gets destroyed then fu-

ture events related to that aircraft must either be deleted, or deleted and rescheduled.

RIZSIM was incorrectly rescheduling events which resulted in messages being sched-

uled at a time less than the current simulation time. The past time scheduling was

the result of trying to reschedule events by executing sensor check without first up-

dating position. This was fixed by simply rescheduling an event by changing it to a

reached turnpoint event, and leaving it at its current position in the event list.

A.2 System Problems

A.2.1 Floating Point Errors. Occasionally a floating point equation would

return as its result 'nan' (not a number). The cause of this problem is not known.

The problem exhibited the following characteristics:

" The equations where this occurred always contained multiplication and addi-

tion on the same line of source code. (x * x) + (x * x)

" This simulation uses double floating point numbers in all calculations.

" The input variables to the equation were checked via printf statements during

debugging and the input should have generated valid results.

" The input variables were local variables.

" The equation would give 'nan' results and then subsequently when the same

line of code was executed again the results would be good. This indicates that

erroneous pointer addressing was not corrupting that line of code in memory. If

the memory location was corrupted then one would think that that instruction

would give erroneous results for the rest of the program execution.

The workaround to the problem was to duplicate the line of code that some-

times gave 'nan' results and execute the identical line of code consecutively. The

second execution of the identical instruction gave good results. Not every line of
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code in the simulation application involving multiplication and addition was repli-

cated. Therefore the error may still be occuring on some of the larger scenario sizes.

Tracing this error is very time consuming since it may not occur until well into a

large scenario.
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Appendix B. Results - Timing Runs

These tables show the raw results of the timing runs. Each table contains the

scenario execution time in seconds for each scenario executing on various numbers

of processors.

Table B.1. 64 Aircraft $cenarios - WithMissiles
#Processors 1 2 4 8 # Events

Scenarios 64a 9.2 7.9 7.6 9.1 474
64b 9.2 8.1 7.6 8.0 508
64c 10.8 9.3 8.5 10.0 562
64d 9.9 8.5 8.0 9.8 511
64e 9.7 8.1 7.9 9.6 494

Ave. Speedup 0 1.16 1.23 1.05
Ave. UseLookahead 0 .39 .5 .56

Table B.2, 128 Aircraft Scenarios - With Missiles
# Processors 1 1 2 [ 41 8 # Events

Scenarios 128a 35.1 27.2 22.7 22.2 1033
128b 35.3 27.7 22.9 22.6 1075
128c 35.6 27.7 22.6 22.0 1069
128d 37.6 30.0 25.1 24.2 1168
128e 36.7 28.7 23.6 22.9 1101

Ave. Speedup 0 1.27 1.53 1.58
Ave. UseLookahead 0 .38 .52 .59
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Table B.3. 256 Aircraft ssiles
# Processorsl 1 14 4 8 ]#Events

Scenarios 256a 150.2 114.8 92.4 77.2 2538
256b 157.5 120.2 95.7 79.6 2674
256c 148.4 115.8 94.2 70.3 2551
256d 138.7 104.9 83.3 75.8 2318
256e 151.3 114.5 89.9 75.8 2506

Ave. Speedup 0 1.31 1.63 1.97
Ave. Use-lookahead 0 .38 .52 .59

Table B.4. 64 Aircraft Scenarios - NO Missiles
# Processors 1 [2 4 [ 8 [# Events

Scenarios 64a 15.8 12.2 10.2 9.5 659
64b 14.9 11.4 9.7 9.1 620
64c 15.7 12.0 10.0 9.6 649
64d 16.5 12.8 10.5 9.7 675
64e 15.7 11.9 10.2 9.9 652

Ave. Speedup 0 1.29 1.55 1.64
Ave. UseLookahead 0 .47 .65 .74

Table B.5. 128 Aict nArios - NO Missiles
# Processors 11 1 2 4 8 # Events

Scenarios 128a 86.6 60.2 44.8 35.9 1815
128b 89.9 62.2 45.7 36.6 1853
128c 87.4 61.4 45.6 36.5 1840
128d 93.1 64.7 47.6 38.0 1937
128e 93.1 64.8 47.1 37.0 1908

Ave. Speedup 0 1.43 1.94 2.44
Ave. UseLookahead 0 .48 .67 .78
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Table B.6. 256 Aircraft ScflA - D10 Miiles
# Processors 11 1 2 4 8 1es

Scenarios 256a 598.6 399.4 286.5 206.3 5945
256b 619.9 418.2 295.9 210.5 6231
256c 600.0 402.1 284.4 205.8 5984
256d 584.8 395.5 279.8 201.5 5885
256e 588.1 391.1 277.7 196.7 5916

Ave. Speedup 0 1.49 2.1 2.93
Ave. Use-Lookahead 0 .4'7 .7 .8

Tabe B.7. 51. Aircraft Scenar" - NQ Missiles
# Processors 1 2 1 4 1 8 1# Events

Scenario 512a I 4555.4 2953.5 2040 14821 21304
Ave. Speedup 0 1.54 2.23 3.07

Ave. UseLookahead 0 .47 .69 .8

Table B.8. 256c Scenario, Spin 10, NO Missiles
F - #ProcessorsD1 1 1 2 4 8 1#Events

Scenario 256c II 743.0 1499.6 352.7 254.6 5984

Ave. Speedup 0 1.48 2.1 2.91
Ave. Use_ _ Ikahead 0 1.471 .69 .80 1

Table B.9. 256c Scenario, Spin 100, NO Missiles
[ #Processors 1 2 1 4 1 8 # Eventsf

Scenario 256c 2025 1374 J 965 696 J 5984

Ave. Speedup 0 1.47 2.09 2.90
Ave. Use-lookahead 0 .47 .69 .80

Table B.10. Perfect Interleave - Lookahead U date
[ # Processors __1_ 8 # Events

Scenario 8 1 2723 683 40
Ave. Speedup 0 3.98

Ave. Use.Lookahead 0 1.0
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Table B. 11. Perfect Interleave - Lookahead time greater than Update time
# Processorsl 118 # Events]

IScenario 8 22~3 346 40 ]I Ave. Speedup 0 17.81
Ave. Use-.Lookahead 0 1.01

Table B.12. 256 Acft - Missiles - No InitialInterleave -_Red/Blue Mix
[# Processors 1 1 8 .1# Events

Scenarios 256a 150.2 -97.8 - 2538
256b 157.5 100.8 2674
256c 1148.4 100.5 2551
256d 1138.7 89.4 2318
256e 151.3 95.6 2506

Ave. Speedup J_011.541FAve. Use..Lookahead 0 .496I____

Table B.13. 256 Acft - Missiles - No Initial Interleave -_Red/Blue Separate
# Processors 1 [8 1# Events

Scenarios 256a 150.2 [100.8 2538
256b 157.5 103.5 2674
256c 148.4 101.4 2551
256d 138.7 92.8 2318
256e 151.3 97.2 2506

Ave. Speedup l0 [1.50 ____IAve. Use..Lookahead 0 [.488 ____

Table B.14. 256 Acft - No Missiles - No InitialInterleave -_Red/Blue Mix
# Processors 1 8 [# Events

Scenarios 256a 598.6 222.8 5945
256b 619.9 236.8 6231
256c 600.0 231.7 5984
256d 584.8 224.2 5885
256e 588.1 222.1 5916I Ave. Speedup 0 12.621

Ave. Use-.Lookahead II0 [.7581
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Table B.15. 256 Acft - No Missiles - No Initial Interleave - Red/Blue Separate
# Processors 1 8 # Events

Scenarios 256a 598.6 227.1 5945
256b 619.9 239.7 6231
256c 600.0 227.3 5984
256d 584.8 225.0 5885
256e 588.1 222.4 5916

Ave. Speedup 012.61
Ave. USELOOKAHEAD 0 .768

Table B.10. 256 Aircraft Scenario -. ith Missiles - Psuedo Realistic
# Processorsll 1 8 # Events

Scenarios r256a 217.6 102.1 3294
r256b 211.1 99.9 3251
r256c 204.9 98.8 3181

Ave. Speedup 0 2.1
AAve.Use.lookahead 0 .63

Table B.17. 256 Aircraft Scenarios,Red/Blue Solid,With MissilesPsuedo Realistic
# Processors 11 1 J 8 # Events

Scenarios r256a 217.6 127.0 3294
r256b 211.1 124.3 3251
r256c 204.9 121.6 3181

Ave. Speedup 0 2.1
Ave Use.ookahead 0 .55

Table B.18. 256 Aircraft Scenarios - No Missiles - Various Routepoints
# of Processors if 1 8 I # Events [ Ratio [ Speedup

Scenarios 256 RP3 216.1 76.6 2444 .75 2.82
256 RP6 606.3 204.2 5980 .81 2.9
256 RP9 1139.0 371.3 10260 .82 3.0

256 RP12 1602.7 511.7 13740 .82 3.1
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Appendix C. The Hybrid Files

File Descriptions:

OVERVIEW:

Application Files: See Rizza's thesis (29) for a description of

these files:

sim-func.c

sim-func.h

sim-stru.h

events. c

events.h

ll.c

Simulation Driver Files:

rizsim.c - the original rizsim.c was replaced with

another locally developed simulation driver. The replacement

simulation driver retains the name rizsim.c as well as some

modules that were in the original rizsim.c.

simdrive.c - contains the MAIN function in the format

required by SPECTRUM.

dll.c - contains various doubly linked list management

functions.

neql.c - contains functions for managing the next event
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queue.

event.h - not to be confused with rizsim's events.h.

This file defines the following:

- contents of an event.

- conditional compilation variables to

turn I/0 on/off.

- global variables used for lookahead

processing and lookahead update

processing.

Parallel Protocol Files:

Spectrum Files:

- globals.h - defines the following:

- structure of the update message.

- structure of the final message sent to the host

for statistical reporting.

- input and output message buffer.

- global_Q_number and tiebreaker array.

- LOOP-COUNT for spin loops.

- application.h - of interest - defines the number of

processors.

This number must match the number of processors

selected at runtime. After changing this

number recompile.

- cube2.c - contains the functions that actually send
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and receive messages. Three functions were

added:

- nodegetonemessage.

- node-sned-one-message.

- node-send-last-time.

- host2.c - some code was added to facilitate

termination processing and data

reporting.

- lp-man.c - Only the initialization functions were

used.

- myfilters.c - not used.

HYBRID FILES:

- rollback.c - described below.

- protocol.c - described below.

- rollback.h - described below.

- protocol.h - described below.

rollback.c

OVERVIEW: This file contains the modules needed to implement

lookahead, lookahead update and local rollback.

GLOBAL VARIABLES:
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Flags used to control execution of look-.ahead and update:

USE-.LOOKAHEAD

LOOKAHEAD-.COMPLETE

MISS ILE-..FLAG

Temporary Storage Global Variables:

These two contain a copy of the pending event and the object

associated with the pending event:

proj ected-.event

proj ected-.obj ect

The following global variables contain data computed as a result

of precomputing the next event:

missile-.event

proj ected-ne..routepoint

etype-.proj ected

et ime-.proj ected

ent ityl ..proj ected

ent ity2-.proj ected

obj ectl-.projected

obj ect2-.proj ected

*note: defined in event.h

MODULES:
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The following modules were essentially copied from RIZSIM.

Changes were made so that when these modules execute a lookahead

event the results are put into temporary storage.

proj ected-.sensor-.check

proj ected-.attack

proj ected.update..position

proj ected.add..new..routpoint

add..event-.coords..to.route..proj ected

proj ected...reached.turnpoint

proj ected.entered-sensor.raxige

proj ected-.made-.sensor-.contact

proj ected..ordnance..released

ordnance..reached-target.proj ected

proj ected-collision-distance-.reached

projected-init - Allocates temporary storage memory f or

global variables.

The following three copy modules makes copies of the info

assciated with the pending event. Called by set.up-lookahead:

copy..object

copy..two..rout epoints

copy-,event

The following three execute the lookahead:
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look-ahead

set-up-lookahead

projected-do-event

The following three update the results of a previous lookahead

execution. The update is based on the content of an incoming

update message. The incoming update message contains change

information for a single aircraft, and perhaps a new missile.

Therefore a single sensor-check is executed involving the aircraft

associated with the incoming update message. The results of the

previously computed lookahead calculations are either left alone,

modified, or thrown out completely and new lookahead or a safe

computation reexecuted:

lookahead.update

single-sensor-check

eventreprojected

The following module is executed when a lookahead and a lookahead

update has completed and this LP is now the LP with the minimal

next event time. This LP is now safe to execute and the lookahead

results are made permanent.

make-lookahead-real

Debugging Modules:
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shov..obj oct

display-e.vent

shov-nupdate

show..proj ected-data

rollback.h - contains prototypes for rollback.c

protocol c

OVERVIEW: The f iles in this module implement the conservative

time

synchronization algorithm.

Global Variables:

output ..message-.buffer

input-m.essage..buffer

SEND-.FLAG

WAIT-ON-.ISEND

master. obj ect..array
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global-maxobj-id

USELOOKAHEAD

LOOKAHEADCOMPLETE

MISSILE-FLAG

global_Q-number

tiebreaker

MSGID

The following module sets up memory for the one deep input and

output message buffers:

init-msg-buffers

The following four modules handle processing incoming update

messages. Before an event is executed incoming update messages

(if any) are processed. Some other LP has safely executed an

event and has sent update information including its new next event

time, the new next event number or Qnumber, whether or not it

created a missile, and state changes to the aircraft associated

with the event that it executed:

process.incomingmessages

process-message

update-attributes

create-a-missile

The following module determines if this LP has the global minimum
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pending next event time. It also handles tiebreaking if there are

two LPs with same pending next event time:

safe-to-execute

The following module is used to provide the pertinent aircraft

state information in the outgoing update message following a safe

event execution:

build-message

The following module initiates an update message send to all LPs

in the simulation. There are two versions: blocking send

currently commented out and non-blocking send. With the

non-blocking send a WAITONISEND flag is set so that

build-message does not overwrite the output message buffer while

output transmission is still going on from a previous execution

and send. Also, nodesend_onemessage must be adjusted depending

upon blocking/non-blocking send.

send-outgoing-messages

Debugging:

shovMOA

NOTE: some of the modules listed above might more appropriately

fit into the application files i.e. sim-func.c since they contain
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application specific references and use the application's data

structures. But since these modules were developed as part of

this effort they were left in this file to make it easier to

identify which modules were newly developed as part of this

effort. Also sim-func.c is already a large file which takes a

longer time to compile than protocol.c. Leaving them in this file

facilitated quicker debugging due to quicker recompilation.

CONDITIONAL COMPILATION - OUTPUT turned on/off

There are conditional compilation 'defines' in the file

event.h.

SCREEN-DISPLAY

GRAPHICDISPLAY

Comment them out and then recompile to turn off all I/0 during a

simulation timing run.

Leave them in to get screen display as output to the grapical

file.of what is going on during the simulation.

SPIN LOOP LOCATIONS:
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rollback.c - single-sensor-check

rollback.c - projected-sensor-check

sim-func.c - sensor-check

LOOP-COUNT - global variable in globals.h

MAPPING AIRCRAFT TO PROCESSORS:

Currently aircraft are mapped in a round robin fashion by the

function schedule-init-events in rizsim.c. In conjunction with

this the tiebreaker array values (protocol.c) must initially match

the event-id or globalQnumber of the first event on each logical

process. This method also assumes that the first line of the

input scenario contains aircraft #1, the second aircraft #2 and so

on. Any other mappings will require changes to

schedule-init-events, the initial values in the tiebreaker array

and/or the ordering of the aircraft in the input scenario.

MAKEFILE: The following is the HYBRID makefile.

CFLAGS - -0

SpecOBJS - cube2.o lp.man.o filters.o myfilters.o protocol.o
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rollback. o

SpecSRC - cube2. c lp-.man. c f ilters. c myf ilters. c protocol. c

rollback. c

HartOBJS - simdrive.o clock.o neql.o event.o dll.o

HartSRC - simdrive.c clock.c neql.c event.c dll.c

RizOBJS - evezits.o sim..func.o ll.o

RizSRC - events.c sim..func.c ll.c

RizLIB - -lm

all: host rizsim

host: host2.c

cc -o host -g host2.c -host

rizuim: $CRizDBJS) $(HartOBJS) $(SpecOBJS) rizsim.o

cc -o rizsiu $(RizOBJS) $(HartOBJS) $(SpecOBJS) $(RizLIB)

rizsim.o -node

rizsim.o: rizsim.c event.h

sim-.func.o: siu..func.c event .h globals.h

1l.o: ll.c

*ventu.o: *vents.c event.h
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cube2.o: cube2.c globals.h cube2.h application.h

lp-.man.o: lp..man.c globals.h application.h

myfilters .0: myfilters .c globals .h

filters-o: filters.c globals.h

protocol.o: protocol.c globals.h protocol.h

rollback.o: rollback.c rollback.h event.h globals.h

simdrive.o: simdrive.c rollback.h

event.o: event.c

clock.o: clock.c

neql.o: neql.c event.h

dll.o: dll.c

PARALLEL RIZSIM EXECUTION:

Type "host" at the UNIX prompt while in the HYBRID directory.

Type "rizsim" in response to request for application name.

There are no command line arguments. Just hit return.

The number of cube nodes and the number of LP's should be the

same. Other mappings have not been tested. Also, these numbers

must match the NUM..PROCS defined in application.h.
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Respond with "y" to natural node assignment in order to get one

logical process per node.

SAMPLE EXECUTION:

c386 42:host

Which application do you want to use?:rizsim

Enter the command line arguments for the program:

How many cube nodes do you want to use?:8

How many LP's are in this application?:8

Do you want to use the 'natural' node assignment?y

load -p 0 0 rizsim

load -p 0 1 rizsim

load -p 0 2 rizsim

load -p 0 3 rizsim

load -p 0 4 rizsim

load -p 0 5 rizsim

load -p 0 6 rizsim

load -p 0 7 rizsim

Cube Loaded

NODE: 0, Input Scenario Read-Time: 0.320000

NODE: 1, Input Scenario Read-Time: 0.340000

NODE: 2, Input Scenario Read-Time: 0.375000

NODE: 3, Input Scenario Read-Time: 0.382000

NODE: 4, Input Scenario Read-Time: 0.377000
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NODE: 5, Input Scenario Read-Time: 0.368000

NODE: 6, Input Scenario ReadTime: 0.364000

NODE: 7, Input Scenario Read-Time: 0.422000

HOST: Wall clock time spent loading cube: 14 (secs)

HOST: Wall clock time spent waiting: 1 (secs)

NODE: 0, Total: 1.566000, Init: 0.412000, Sim: 14.785648, Do

Event: 7, Made Real: 15

NODE: 1, Total: 1.621000, Init: 0.444000, Sim: 17.142247, Do

Event: 9, Made Real: 11

NODE: 2, Total: 1.446000, Init: 0.531000, Sim: 10.909954, Do

Event: 4, Made Real: 15

NODE: 3, Total: 1.603000, Init: 0.602000, Sim: 19.394066, Do

Event: 6, Made Real: 16

NODE: 4, Total: 1.609000, Init: 0.636000, Sim: 23.022969, Do

Event: 5, Made Real: 13

NODE: 5, Total: 1.418000, Init: 0.666000, Sim: 9.985460, Do Event:

3, Made Real: 11

NODE: 6, Total: 1.617000, Init: 0.694000, Sim: 25.103488, Do

Event: 4, Made Real: 13

NODE: 7, Total: 1.613000, Init: 0.725000, Sim: 23.531224, Do

Event: 3, Made Real: 15

TOTAL DO: 41, TOTAL MADE: 109, TOTAL EVENTS: 150, USELOOKAHEAD

ratio: 0.726667

c386 43:

Total - at each node refers to total execution time.

C-15



Init - at each node refers to the initialization time.

Sim - at each node refers to final simulation clock time on that

node.

Do Event - at each node is the number of events executed normally.

Made Real - at each node refers to the number of events that USED

LOOKAHEAD.

For the host the wall clock time spent waiting refers to the time

the host spent waiting for all of the nodes to complete after all

of the nodes were loaded.
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This study describes a method of parallelizing a battlefield discrete event simulation. The method comblines
elements of conservative time synchronization together with elements of optimistic computation and local rollback
on a message passing hardware architecture. The battle simulation features aircraft moving in a battle area and

launching missiles at enemy aircraft. Aircraft. are randomly grouped into logical processes (LPs), and a single

LP is assigned to each processor. Aircraft state information is replicated across all LPs. Only the LP with the
minimum next event time can execute safely. While one LP is executing safely all other LPs are precomputing
their next event. When an LP does become safe to execute it can update its previous preconiputation and
broadcast the results to all other LPs. The sequential battlefield simulation has no battlefield partiiions, and
therefore the pros and cons of partitioning the battlefield in a conservative parallel implementation are discussed.

Simulation speedup was achieved without battlefield partitioning and various simulation scenarios were run in
order to investigate the impact of event interleaving among logical processes on simulation speedup.
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